921 resultados para Communication channel
Resumo:
In this paper we address the problem of transmission of correlated sources over a fading multiple access channel (MAC). We provide sufficient conditions for transmission with given distortions. Next these conditions are specialized to a Gaussian MAC (GMAC). Transmission schemes for discrete and Gaussian sources over a fading GMAC are considered. Various power allocation strategies are also compared. Keywords: Fading MAC, Power allocation, Random TDMA, Amplify and Forward, Correlated sources.
Resumo:
The capacity region of a two-user Gaussian Multiple Access Channel (GMAC) with complex finite input alphabets and continuous output alphabet is studied. When both the users are equipped with the same code alphabet, it is shown that, rotation of one of the user’s alphabets by an appropriate angle can make the new pair of alphabets not only uniquely decodable, but will result in enlargement of the capacity region. For this set-up, we identify the primary problem to be finding appropriate angle(s) of rotation between the alphabets such that the capacity region is maximally enlarged. It is shown that the angle of rotation which provides maximum enlargement of the capacity region also minimizes the union bound on the probability of error of the sumalphabet and vice-verse. The optimum angle(s) of rotation varies with the SNR. Through simulations, optimal angle(s) of rotation that gives maximum enlargement of the capacity region of GMAC with some well known alphabets such as M-QAM and M-PSK for some M are presented for several values of SNR. It is shown that for large number of points in the alphabets, capacity gains due to rotations progressively reduce. As the number of points N tends to infinity, our results match the results in the literature wherein the capacity region of the Gaussian code alphabet doesn’t change with rotation for any SNR.
Resumo:
We consider the problem of distributed joint source-channel coding of correlated Gaussian sources over a Gaussian Multiple Access Channel (MAC). There may be side information at the encoders and/or at the decoder. First we specialize a general result in [16] to obtain sufficient conditions for reliable transmission over a Gaussian MAC. This system does not satisfy the source channel separation. Thus, next we study and compare three joint source channel coding schemes available in literature.
Resumo:
We consider a dense ad hoc wireless network comprising n nodes confined to a given two dimensional region of fixed area. For the Gupta-Kumar random traffic model and a realistic interference and path loss model (i.e., the channel power gains are bounded above, and are bounded below by a strictly positive number), we study the scaling of the aggregate end-to-end throughput with respect to the network average power constraint, P macr, and the number of nodes, n. The network power constraint P macr is related to the per node power constraint, P macr, as P macr = np. For large P, we show that the throughput saturates as Theta(log(P macr)), irrespective of the number of nodes in the network. For moderate P, which can accommodate spatial reuse to improve end-to-end throughput, we observe that the amount of spatial reuse feasible in the network is limited by the diameter of the network. In fact, we observe that the end-to-end path loss in the network and the amount of spatial reuse feasible in the network are inversely proportional. This puts a restriction on the gains achievable using the cooperative communication techniques studied in and, as these rely on direct long distance communication over the network.
Resumo:
Accurate system planning and performance evaluation requires knowledge of the joint impact of scheduling, interference, and fading. However, current analyses either require costly numerical simulations or make simplifying assumptions that limit the applicability of the results. In this paper, we derive analytical expressions for the spectral efficiency of cellular systems that use either the channel-unaware but fair round robin scheduler or the greedy, channel-aware but unfair maximum signal to interference ratio scheduler. As is the case in real deployments, non-identical co-channel interference at each user, both Rayleigh fading and lognormal shadowing, and limited modulation constellation sizes are accounted for in the analysis. We show that using a simple moment generating function-based lognormal approximation technique and an accurate Gaussian-Q function approximation leads to results that match simulations well. These results are more accurate than erstwhile results that instead used the moment-matching Fenton-Wilkinson approximation method and bounds on the Q function. The spectral efficiency of cellular systems is strongly influenced by the channel scheduler and the small constellation size that is typically used in third generation cellular systems.
Resumo:
Statistical information about the wireless channel can be used at the transmitter side to enhance the performance of MIMO systems. This paper addresses how the concept of channel precoding can be used to enhance the performance of STBCs from Generalized Pseudo Orthogonal Designs which were first introduced by Zhu and Jafarkhani. Such designs include some important classes of STBCs that are directly derivable from Quasi-Orthogonal Designs and Co-ordinate Interleaved Orthogonal Designs.
Resumo:
Cooperative relay communication in a fading channel environment under the orthogonal amplify-and-forward (OAF), non-orthogonal and orthogonal selection decode-and-forward (NSDF and OSDF) protocols is considered here. The diversity-multiplexing gain tradeoff (DMT) of the three protocols is determined and DMT-optimal distributed space-time code constructions are provided. The codes constructed are sphere decodable and in some instances incur minimum possible delay. Included in our results is the perhaps surprising finding that the OAF and NAF protocols have identical DMT when the time durations of the broadcast and cooperative phases are optimally chosen to suit the respective protocol. Two variants of the NSDF protocol are considered: fixed-NSDF and variable-NSDF protocol. In the variable-NSDF protocol, the fraction of time occupied by the broadcast phase is allowed to vary with multiplexing gain. In the two-relay case, the variable-NSDF protocol is shown to improve on the DMT of the best previously-known static protocol for higher values of multiplexing gain. Our results also establish that the fixed-NSDF protocol has a better DMT than the NAF protocol for any number of relays.
Resumo:
We consider a time varying wireless fading channel, equalized by an LMS Decision Feedback equalizer (DFE). We study how well this equalizer tracks the optimal MMSEDFE (Wiener) equalizer. We model the channel by an Autoregressive (AR) process. Then the LMS equalizer and the AR process are jointly approximated by the solution of a system of ODEs (ordinary differential equations). Using these ODEs, we show via some examples that the LMS equalizer moves close to the instantaneous Wiener filter after initial transience. We also compare the LMS equalizer with the instantaneous optimal DFE (the commonly used Wiener filter) designed assuming perfect previous decisions and computed using perfect channel estimate (we will call it as IDFE). We show that the LMS equalizer outperforms the IDFE almost all the time after initial transience.
Resumo:
High-rate analysis of channel-optimized vector quantizationThis paper considers the high-rate performance of channel optimized source coding for noisy discrete symmetric channels with random index assignment. Specifically, with mean squared error (MSE) as the performance metric, an upper bound on the asymptotic (i.e., high-rate) distortion is derived by assuming a general structure on the codebook. This structure enables extension of the analysis of the channel optimized source quantizer to one with a singular point density: for channels with small errors, the point density that minimizes the upper bound is continuous, while as the error rate increases, the point density becomes singular. The extent of the singularity is also characterized. The accuracy of the expressions obtained are verified through Monte Carlo simulations.
Resumo:
This paper considers the degrees of freedom (DOF) for a K user multiple-input multiple-output (MIMO) M x N interference channel using interference alignment (IA). A new performance metric for evaluating the efficacy of IA algorithms is proposed, which measures the extent to which the desired signal dimensionality is preserved after zero-forcing the interference at the receiver. Inspired by the metric, two algorithms are proposed for designing the linear precoders and receive filters for IA in the constant MIMO interference channel with a finite number of symbol extensions. The first algorithm uses an eigenbeamforming method to align sub-streams of the interference to reduce the dimensionality of the interference at all the receivers. The second algorithm is iterative, and is based on minimizing the interference leakage power while preserving the dimensionality of the desired signal space at the intended receivers. The improved performance of the algorithms is illustrated by comparing them with existing algorithms for IA using Monte Carlo simulations.
Resumo:
Frequency-domain scheduling and rate adaptation enable next-generation orthogonal frequency-division multiple access (OFDMA) cellular systems such as Long-Term Evolution (LTE) to achieve significantly higher spectral efficiencies. LTE uses a pragmatic combination of several techniques to reduce the channel-state feedback that is required by a frequency-domain scheduler. In the subband-level feedback and user-selected subband feedback schemes specified in LTE, the user reduces feedback by reporting only the channel quality that is averaged over groups of resource blocks called subbands. This approach leads to an occasional incorrect determination of rate by the scheduler for some resource blocks. In this paper, we develop closed-form expressions for the throughput achieved by the feedback schemes of LTE. The analysis quantifies the joint effects of three critical components on the overall system throughput-scheduler, multiple-antenna mode, and the feedback scheme-and brings out its dependence on system parameters such as the number of resource blocks per subband and the rate adaptation thresholds. The effect of the coarse subband-level frequency granularity of feedback is captured. The analysis provides an independent theoretical reference and a quick system parameter optimization tool to an LTE system designer and theoretically helps in understanding the behavior of OFDMA feedback reduction techniques when operated under practical system constraints.
Resumo:
Frequency-domain scheduling and rate adaptation enable next generation wireless cellular systems such as Long Term Evolution (LTE) to achieve significantly higher downlink throughput. LTE assigns subcarriers in chunks, called physical resource blocks (PRBs), to users to reduce control signaling overhead. To reduce the enormous feedback overhead, the channel quality indicator (CQI) report that is used to feed back channel state information is averaged over a subband, which, in turn, is a group of multiple PRBs. In this paper, we develop closed-form expressions for the throughput achieved by the subband-level CQI feedback mechanism of LTE. We show that the coarse frequency resolution of the CQI incurs a significant loss in throughput and limits the multi-user gains achievable by the system. We then show that the performance can be improved by means of an offset mechanism that effectively makes the users more conservative in reporting their CQI.
Resumo:
In this paper, we have studied the effect of gate-drain/source overlap (LOV) on the drain channel noise and induced gate current noise (SIg) in 90 nm N-channel metal oxide semiconductor field effect transistors using process and device simulations. As the change in overlap affects the gate tunneling leakage current, its effect on shot noise component of SIg has been taken into consideration. It has been shown that “control over LOV” allows us to get better noise performance from the device, i.e., it allows us to reduce noise figure, for a given leakage current constraint. LOV in the range of 0–10 nm is recommended for the 90 nm gate length transistors, in order to get the best performance in radio frequency applications.
Resumo:
Upper bounds on the probability of error due to co-channel interference are proposed in this correspondence. The bounds are easy to compute and can be fairly tight.