978 resultados para Coli Nitrate Reductase
Resumo:
YqjH is a cytoplasmic FAD-containing protein from Escherichia coli; based on homology to ViuB of Vibrio cholerae, it potentially acts as a ferri-siderophore reductase. This work describes its overexpression, purification, crystallization and structure solution at 3.0 A resolution. YqjH shares high sequence similarity with a number of known siderophore-interacting proteins and its structure was solved by molecular replacement using the siderophore-interacting protein from Shewanella putrefaciens as the search model. The YqjH structure resembles those of other members of the NAD(P)H:flavin oxidoreductase superfamily.
Resumo:
Three different cDNAs, Prh-19, Prh-26, and Prh-43 [3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase homolog], have been isolated by complementation of an Escherichia coli cysH mutant, defective in PAPS reductase activity, to prototrophy with an Arabidopsis thaliana cDNA library in the expression vector λYES. Sequence analysis of the cDNAs revealed continuous open reading frames encoding polypeptides of 465, 458, and 453 amino acids, with calculated molecular masses of 51.3, 50.5, and 50.4 kDa, respectively, that have strong homology with fungal, yeast, and bacterial PAPS reductases. However, unlike microbial PAPS reductases, each PRH protein has an N-terminal extension, characteristic of a plastid transit peptide, and a C-terminal extension that has amino acid and deduced three-dimensional homology to thioredoxin proteins. Adenosine 5′-phosphosulfate (APS) was shown to be a much more efficient substrate than PAPS when the activity of the PRH proteins was tested by their ability to convert 35S-labeled substrate to acid-volatile 35S-sulfite. We speculate that the thioredoxin-like domain is involved in catalytic function, and that the PRH proteins may function as novel “APS reductase” enzymes. Southern hybridization analysis showed the presence of a small multigene family in the Arabidopsis genome. RNA blot hybridization with gene-specific probes revealed for each gene the presence of a transcript of ≈1.85 kb in leaves, stems, and roots that increased on sulfate starvation. To our knowledge, this is the first report of the cloning and characterization of plant genes that encode proteins with APS reductase activity and supports the suggestion that APS can be utilized directly, without activation to PAPS, as an intermediary substrate in reductive sulfate assimilation.
Resumo:
delta-Aminolevulinate in plants, algae, cyanobacteria, and several other bacteria such as Escherichia coli and Bacillus subtilis is synthesized from glutamate by means of a tRNA(Glu) mediated pathway. The enzyme glutamyl tRNA(Glu) reductase catalyzes the second step in this pathway, the reduction of tRNA bound glutamate to give glutamate 1-semialdehyde. The hemA gene from barley encoding the glutamyl tRNA(Glu) reductase was expressed in E. coli cells joined at its amino terminal end to Schistosoma japonicum glutathione S-transferase (GST). GST-glutamyl tRNA(Glu) reductase fusion protein and the reductase released from it by thrombin digestion catalyzed the reduction of glutamyl tRNA(Glu) to glutamate 1-semialdehyde. The specific activity of the fusion protein was 120 pmol.micrograms-1.min-1. The fusion protein used tRNA(Glu) from barley chloroplasts preferentially to E. coli tRNA(Glu) and its activity was inhibited by hemin. It migrated as an 82-kDa polypeptide with SDS/PAGE and eluted with an apparent molecular mass of 450 kDa from Superose 12. After removal of the GST by thrombin, the protein migrated as an approximately equal to 60-kDa polypeptide with SDS/PAGE, whereas gel filtration on Superose 12 yielded an apparent molecule mass of 250 kDa. Isolated fusion protein contained heme, which could be reduced by NADPH and oxidized by air.
Resumo:
During anaerobic growth Escherichia coli uses a specific ribonucleoside-triphosphate reductase (class III enzyme) for the production of deoxyribonucleoside triphosphates. In its active form, the enzyme contains an iron-sulfur center and an oxygen-sensitive glycyl radical (Gly-681). The radical is generated in the inactive protein from S-adenosylmethionine by an auxiliary enzyme system present in E. coli. By modification of the previous purification procedure, we now prepared a glycyl radical-containing reductase, active in the absence of the auxiliary reducing enzyme system. This reductase uses formate as hydrogen donor in the reaction. During catalysis, formate is stoichiometrically oxidized to CO2, and isotope from [3H]formate appears in water. Thus E. coli uses completely different hydrogen donors for the reduction of ribonucleotides during anaerobic and aerobic growth. The aerobic class I reductase employs redox-active thiols from thioredoxin or glutaredoxin to this purpose. The present results strengthen speculations that class III enzymes arose early during the evolution of DNA.
Resumo:
Although bacterial strain able to grow in the presence of organic solvents have been isolated, little is known about the mechanism of their resistance. In the present study, 1,2,3,4-tetrahydronaphthalene (tetralin), a solvent with potential applications in industrial biocatalysis, was used to select a resistant mutant of Escherichia coli. The resultant mutant strain was tested for resistance to a wide range of solvents of varying hydrophobicities and was found to be resistant not only to tetralin itself but also to cyclohexane, propylbenzene, and 1,2-dihydronaphthalene. A recombinant library from mutant DNA was used to clone the resistance gene. The sequence of the cloned locus was determined and found to match the sequence of the previously described alkylhydroperoxide reductase operon ahpCF. The mutation was localized to a substitution of valine for glycine at position 142 in the coding region of ahpC, which is the gene encoding the catalytic subunit of the enzyme. The ahpC mutant was found to have an activity that was three times that of the wild type in reducing tetralin hydroperoxide to 1,2,3,4-tetrahydro-1-naphthol. We conclude that the toxicity of such solvents as tetralin is caused by the formation of toxic hydroperoxides in the cell. The ahpC mutation increases the activity of the enzyme toward hydrophobic hydroperoxides, thereby conferring resistance. The ahpC mutant was sensitive to the more hydrophilic solvents xylene and toluene, suggesting that there are additional mechanisms of solvent toxicity. Mutants resistant to a mixture of xylene and tetralin were isolated from the ahpC mutant but not from the wild-type strain.
Metabolic and kinetic analysis of poly(3-hydroxybutyrate) production by recombinant Escherichia coli
Resumo:
A quantitatively repeatable protocol was developed for poly(3-hydroxybutyrate) (PHB) production by Escherichia coli XL1-Blue (pSYL107). Two constant-glucose fed-batch fermentations of duration 25 h were carried out in a 5-L bioreactor, with the measured oxygen volumetric mass-transfer coefficient (k(L)a) held constant at 1.1 min(-1). All major consumption and production rates were quantified. The intracellular concentration profiles of acetyl-CoA (300 to 600 mug.g RCM-1) and 3-hydroxy-butyryl-CoA (20 to 40 mug.g RCM-1) were measured, which is the first time this has been performed for E. coli during PHB production. The kinetics of PHB production were examined and likely ranges were established for polyhydroxyalkanoate (PHA) enzyme activity and the concentration of pathway metabolites. These measured and estimated values are quite similar to the available literature estimates for the native PHB producer Ralstonia eutropha. Metabolic control analysis performed on the PHB metabolic pathway showed that the PHB flux was highly sensitive to acetyl-CoA/CoA ratio (response coefficient 0.8), total acetyl-CoA + CoA concentration (response coefficient 0.7), and pH (response coefficient -1.25). It was less sensitive (response coefficient 0.25) to NADPH/NADP ratio. NADP(H) concentration (NADPH + NADP) had a negligible effect. No single enzyme had a dominant flux control coefficient under the experimental conditions examined (0.6, 0.25, and 0.15 for 3-ketoacyl-CoA reductase, PHA synthase, and 3-ketothiolase, respectively). In conjunction with metabolic flux analysis, kinetic analysis was used to provide a metabolic explanation for the observed fermentation profile. In particular, the rapid onset of PHB production was shown to be caused by oxygen limitation, which initiated a cascade of secondary metabolic events, including cessation of TCA cycle flux and an increase in acetyl-CoA/CoA ratio. (C) 2001 John Wiley & Sons. Inc. Biotechnol Bioeng 74: 70-80, 2001.
Resumo:
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY 1002/3A4. which express respective human P450 enzymes and NADPH-cytochrome P350 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA 1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double me promoter and the other, pOA 102, carrying O-AT and umuClacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 135 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 1-Amino-1,4-dimethyl-5H-pyrido[4.3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B-1 exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta -Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrom P450 enzyme involved in bioactivation of HCAs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Bioquímica, especialidade de Bioquímica-Física pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa
Resumo:
J Biol Inorg Chem (2004) 9: 839–849 DOI 10.1007/s00775-004-0584-6
Resumo:
The Pseudomonas aeruginosa gene anr, which encodes a structural and functional analog of the anaerobic regulator Fnr in Escherichia coli, was mapped to the SpeI fragment R, which is at about 59 min on the genomic map of P. aeruginosa PAO1. Wild-type P. aeruginosa PAO1 grew under anaerobic conditions with nitrate, nitrite, and nitrous oxide as alternative electron acceptors. An anr deletion mutant, PAO6261, was constructed. It was unable to grow with these alternative electron acceptors; however, its ability to denitrify was restored upon the introduction of the wild-type anr gene. In addition, the activities of two enzymes in the denitrification pathway, nitrite reductase and nitric oxide reductase, were not detectable under oxygen-limiting conditions in strain PAO6261 but were restored when complemented with the anr+ gene. These results indicate that the anr gene product plays a key role in anaerobically activating the entire denitrification pathway.
Resumo:
The anaerobic transcriptional regulator ANR induces the arginine deiminase and denitrification pathways in Pseudomonas aeruginosa during oxygen limitation. The homologous activator FNR of Escherichia coli, when introduced into an anr mutant of P. aeruginosa, could functionally replace ANR for anaerobic growth on nitrate but not for anaerobic induction of arginine deiminase. In an FNR-positive E. coli strain, the ANR-dependent promoter of the arcDABC operon, which encodes the enzymes of the arginine deiminase pathway, was not expressed. To analyse systematically these distinct induction patterns, a lacZ promoter-probe, broad-host-range plasmid containing various -40 regions (the ANR/FNR recognition sequences) and -10 promoter sequences was constructed. These constructs were tested in P. aeruginosa and in E. coli expressing either ANR or FNR. In conjunction with the consensus -10 hexamer of E. coli sigma 70 RNA polymerase (TATAAT), the consensus FNR site (TTGAT ..... ATCAA) was recognized efficiently by ANR and FNR in both hosts. By contrast, when promoters contained the Arc box (TTGAC .... ATCAG), which is found in the arcDABC promoter, or a symmetrical mutant FNR site (CTGAT .... ATCAG), ANR was a more effective activator than was FNR. Conversely, an extended 22 bp, fully symmetrical FNR site allowed better activation with FNR than with ANR. Combination of the arc promoter -10 sequence (CCTAAT) with the Arc box or the consensus FNR site resulted in good ANR-dependent expression in P. aeruginosa but gave practically no expression in E. coli, suggesting that RNA polymerase of P. aeruginosa differs from the E. coli enzyme in -10 recognition specificity. In conclusion, ANR and FNR are able to activate the RNA polymerases of P. aeruginosa and E. coli when the -40 and -10 promoter elements ae identical or close to the E. coli consensus sequences.
Resumo:
Sepsis, the leading cause of death in intensive care units, is associated with overproduction of nitric oxide (NO) due to inducible NO synthase (iNOS), responsible for some of the pathologic changes. Aminoguanidine (AG) is a selective iNOS inhibitor with reported inconsistent actions in sepsis. To investigate the influence of iNOS, we studied models of acute bacterial sepsis using acute challenges with aerobic (Escherichia coli) and anaerobic (Bacteroides fragilis) bacteria in the presence of AG. Six-week-old, 23 g, male and female BALB/c and C57Bl/6j mice, in equal proportions, were inoculated (ip) with bacteria in groups of 4 animals for each dose and each experiment in the absence or presence of AG (50 mg/kg, ip, starting 24 h before challenge and daily until day 6) and serum nitrate was measured by chemiluminescence. Both types of bacteria were lethal to mice, with an LD50 of 6 nephelometric units (U) for E. coli and 8 U for B. fragilis. Nitrate production peaked on the second day after E. coli inoculation with 8 and 6 U (P < 0.05), but was absent after non-lethal lower doses. After challenge with B. fragilis this early peak occurred at all tested doses after 24 h, including non-lethal ones (P < 0.05). AG-treated mice challenged with E. coli presented higher survival (P < 0.05) and increased LD50. AG-treated mice challenged with B. fragilis had lower LD50 and higher mortality. Control AG-treated animals presented no toxic effects. The opposite effect of iNOS blockade by AG in these models could be explained by restriction of oxygen for immune cells or an efficient action of NO in anaerobic localized infections. The antagonic role of NO production observed in our bacterial models could explain the reported discrepancy of NO action in sepsis.