935 resultados para Cold neutrons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation characteristics of stainless steel type AISI 316L under compression in the temperature range 20 to 600 degrees C and strain rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At temperatures lower than 100 degrees C and strain rates higher than 0.1 s(-1), 316L stainless steel exhibits flow localization whereas dynamic strain aging (DSA) occurs at intermediate temperatures and below 1 s(-1). To avoid the above flow instabilities, cold working should be carried out at strain rates less than 0.1 s(-1). Warm working of stainless steel type AISI 316L may be done in the temperature and strain rate regime of: 300 to 400 degrees C and 0.001 s(-1) 300 to 450 degrees C and 0.01 s(-1): 450 to 600 degrees C and 0.1 s(-1); 500 degrees C and 1 s(-1) since these regions are free from flow instabilities like DSA and flow localization. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation characteristics of as-cast 304 stainless steel under compression in the temperature range 20-600 degrees C and strain rate range 0.001-100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. Ar strain rates of less than 0.05 s(-1), as-cast 304 stainless steel exhibits flow localization in the temperature range 20-600 degrees C, whereas dynamic strain ageing occurs at intermediate temperatures and below 5 s(-1). At room temperatures and strain rates of less than 0.05 s(-1), martensite formation is observed. To avoid the above microstructural instabilities warm working should be carried out at strain rates greater than 10 s(-1) in the temperature range 400-600 degrees C and cold working could be done in the range of about 0.05-0.8 s(-1). The continuum criterion developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all of the above instability features. (C) 1997 Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a gas flow field on the size of raceway has been studied experimentally using a two-dimensional (2-D) cold model. It is observed that as the blast velocity from the tuyere increases, raceway size increases, and when the blast velocity is decreased from its highest value, raceway size does not change much until the velocity reaches a critical velocity. Below the critical velocity, raceway size decreases with decreasing velocity but is always larger than that for the same velocity when the velocity increased. This phenomenon is called "raceway hysteresis." Raceway hysteresis has been studied in the presence of different gas flow rates and different particle densities. Raceway hysteresis has been observed in all the experiments. The effect of liquid flow, with various superficial velocities, on raceway hysteresis has also been studied. A study of raceway size hysteresis shows that interparticle and particle-wall friction have a very large effect on raceway size. A hypothesis has been proposed to describe the hysteresis phenomenon in the packed beds. The relevance of hysteresis to blast furnace raceways has been discussed. Existing literature correlations for raceway size ignore the frictional effects. Therefore, their applicability to the ironmaking blast furnace is questionable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is important to know and to quantify the liquid holdups both dynamic and static at local levels as it will lead to understand various blast furnace phenomena properly such as slag/metal.gas.solid reactions, gas flow behaviour and interfacial area between the gas/solid/liquid. In the present study, considering the importance of local liquid holdup and non-availability of holdup data in these systems, an attempt has been made to quantify the local holdups in the dropping and around raceway zones in a cold model study using a non-wetting packing for liquid. In order to quantify the liquid holdups at microscopic level, a previously developed technique, X-ray radiography, has been used. It is observed that the liquid flows in preferred paths or channels which carry droplets/rivulets. It has been found that local holdup in some regions of the packed bed is much higher than average at a particular flow rate and this can have important consequences for the correct modelling of such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research is focused on understanding the role of microstructural variables and processing parameters in obtaining optimised dual phase structures in medium carbon low alloy steels. Tempered Martensite structures produced at 300, 500, and 650 degrees C, were cold rolled to varied degrees ranging from 20 to 80% deformation. Intercritical annealing was then performed at 740, 760, and 780 degrees C for various time duration ranging from 60 seconds to 60 minutes before quenching in water. The transformation behaviour was studied with the aid of optical microscopy and hardness curves. From the results, it is observed that microstructural condition, deformation, and intercritical temperatures influenced the chronological order of the competing stress relaxation and decomposition phase reactions which interfered with the rate of the expected alpha -> gamma transformation. The three unique transformation trends observed are systematically analyzed. It was also observed that the 300 and 500 degrees C tempered initial microstructures were unsuitable for the production of dual structures with optimized strength characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a relativistic, degenerate electron gas at zero temperature under the influence of a strong, uniform, static magnetic field, neglecting any form of interactions. Since the density of states for the electrons changes due to the presence of the magnetic field (which gives rise to Landau quantization), the corresponding equation of state also gets modified. In order to investigate the effect of very strong magnetic field, we focus only on systems in which a maximum of either one, two, or three Landau level(s) is/are occupied. This is important since, if a very large number of Landau levels are filled, it implies a very low magnetic field strength which yields back Chandrasekhar's celebrated nonmagnetic results. The maximum number of occupied Landau levels is fixed by the correct choice of two parameters, namely, the magnetic field strength and the maximum Fermi energy of the system. We study the equations of state of these one-level, two-level, and three-level systems and compare them by taking three different maximum Fermi energies. We also find the effect of the strong magnetic field on the mass-radius relation of the underlying star composed of the gas stated above. We obtain an exciting result that it is possible to have an electron-degenerate static star, namely, magnetized white dwarfs, with a mass significantly greater than the Chandrasekhar limit in the range 2.3-2.6M(circle dot), provided it has an appropriate magnetic field strength and central density. In fact, recent observations of peculiar type Ia supernovae-SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg-seem to suggest super-Chandrasekhar-mass white dwarfs with masses up to 2.4-2.8M(circle dot) as their most likely progenitors. Interestingly, our results seem to lie within these observational limits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-layered materials have been made from Cu-Fe with approximately equal volume fractions using the Accumulated Roll Bonding (ARB) technique with less than 1 μm thickness of the individual layers. The so-obtained multi-layers have been subjected to deformation by cold rolling to 25, 50, 75, 87 and 93% reduction in thickness. A detailed characterization has been carried out using X-ray diffraction (line profile analysis and texture measurement) and electron (scanning and transmission) microscopy. It has been found that Fe layers are disintegrated whereas Cu retains its continuity within a layer. Microstructural Characterization from X-Ray Line profile Analysis (XRDLPA) through Variance Method reveals that large amount of strain is initially carried by Cu layers during deformation. In the Cu-Fe layer, the texture is comparatively weaker in Cu layer and strong in Fe layers. Brass Component increases up to 75% reduction and then decreases, while the ratio of Cu/S and Bs/S remains almost constant through out the deformation. After 50% reduction, dynamic recovery is predominant as indicated by the increase in the amount of low angle grain boundaries and decrease in dislocation density. The presence of R component indicates continuous dynamic recovery and recrystallization (CDRR) at the advanced stage of deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical solution to describe the transient temperature distribution in a geothermal reservoir in response to injection of cold water is presented. The reservoir is composed of a confined aquifer, sandwiched between rocks of different thermo-geological properties. The heat transport processes considered are advection, longitudinal conduction in the geothermal aquifer, and the conductive heat transfer to the underlying and overlying rocks of different geological properties. The one-dimensional heat transfer equation has been solved using the Laplace transform with the assumption of constant density and thermal properties of both rock and fluid. Two simple solutions are derived afterwards, first neglecting the longitudinal conductive heat transport and then heat transport to confining rocks. Results show that heat loss to the confining rock layers plays a vital role in slowing down the cooling of the reservoir. The influence of some parameters, e.g. the volumetric injection rate, the longitudinal thermal conductivity and the porosity of the porous media, on the transient heat transport phenomenon is judged by observing the variation of the transient temperature distribution with different values of the parameters. The effects of injection rate and thermal conductivity have been found to be profound on the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, a detailed visualization of the transport of fuel film has been performed in a small carburetted engine with a transparent manifold at the exit of the carburettor. The presence of fuel film is observed significantly on the lower half of the manifold at idling, while at load conditions, the film is found to be distributed all throughout the manifold walls. Quantitative measurement of the fuel film in a specially-designed manifold of square cross section has also been performed using the planar laser-induced fluorescence (PLIF) technique. The measured fuel film thickness is observed to be of the order of 1 nun at idling, and in the range of 0.1 to 0.4 mm over the range of load and speed studied. These engine studies are complemented by experiments conducted in a carburettor rig to study the state of the fuel exiting the carburettor. Laser-based Particle/Droplet Image Analysis (PDIA) technique is used to identify fuel droplets and ligaments and estimate droplet diameters. At a throttle position corresponding to idling, the fuel exiting the carburettor is found to consist of very fine droplets of size less than 15 mu m and large fuel ligaments associated with length scales of the order of 500 mu m and higher. For a constant pressure difference across the carburettor, the fuel consists of droplets with an SMD of the order of 30 mu m. Also, the effect of liquid fuel film on the cold start HC emissions is studied. Based on the understanding obtained from these studies, strategies such as manifold heating and varying carburettor main jet nozzle diameter are implemented. These are observed to reduce emissions under both idling and varying load conditions.