925 resultados para Coherence function, X
Resumo:
Quinary chalcogenide compounds Cu2.1Zn0.9Sn1-xInxSe4 (0 <= x <= 0.1) were prepared by melting (1170K) followed by annealing (773 K) for 172 h. Powder X-ray diffraction (XRD) data accompanied by electron probe microanalysis (EPMA) and Raman spectra of all the samples confirmed the formation of a tetragonal kesterite structure with Cu2FeSnS4-type. The thermoelectric properties of all the samples were measured as a function of temperature in the range of 300-780K. The electrical resistivity of all the samples exhibits metallic-like behavior. The positive values of the Seebeck coefficient and the Hall coefficient reveal that holes are the majority charge carriers. The codoping of copper and indium leads to a significant increase of the electrical resistivity and the Seebeck coefficient as a function of temperature above 650 K. The thermal conductivity of all the samples decreases with increasing temperature. Lattice thermal conductivity is not significantly modified as the doping content may infer negligible mass fluctuation scattering for copper/zinc and indium/tin substitution. Even though, the power factors (S-2/rho) of indium-doped samples Cu2.1Zn0.9Sn1-xInxSe4 (x = 0.05, 0.075) are almost the same, the maximum zT = 0.45 at 773K was obtained for Cu2.1Zn0.9Sn0.925In0.075Se4 due to its smaller value of thermal conductivity. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors-phase consistency as well as amplitude covariation across trials-but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over-or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.
Resumo:
The nature of the stress and electric field driven structural and microstructural transformations in the morphotropic phase boundary (MPB) compositions of the high Curie point piezoelectric system BiScO3-PbTiO3 has been examined by ex situ based techniques. Using a powder poling technique, which is based on the concept of exploiting the irreversible structural change that occurs after the application of a strong electric field and stress independently, it was possible to ascertain that both moderate stress and electric field induce identical structural transformation-a fraction of the monoclinic phase transforms irreversibly to the tetragonal phase. Moreover, analysis of the dielectric response before and after poling revealed a counterintuitive phenomenon of poling induced decrease in the spatial coherence of polarization for compositions around the MPB and not so for compositions far away from the MPB range. Exploiting the greater sensitivity of this technique, we demonstrate that the criticality associated with the interferroelectric transition spans a wider composition range than what is conventionally reported in the literature based on bulk x-ray/neutron powder diffraction techniques.
Resumo:
Experimental charge density analysis combined with the quantum crystallographic technique of X-ray wavefunction refinement (XWR) provides quantitative insights into the intra-and intermolecular interactions formed by acetazolamide, a diuretic drug. Firstly, the analysis of charge density topology at the intermolecular level shows the presence of exceptionally strong interaction motifs such as a DDAA-AADD (D-donor, A-acceptor) type quadruple hydrogen bond motif and a sulfonamide dimer synthon. The nature and strength of intra-molecular S center dot center dot center dot O chalcogen bonding have been characterized using descriptors from the multipole model (MM) and XWR. Although pure geometrical criteria suggest the possibility of two intra-molecular S center dot center dot center dot O chalcogen bonded ring motifs, only one of them satisfies the ``orbital geometry'' so as to exhibit an interaction in terms of an electron density bond path and a bond critical point. The presence of `s-holes' on the sulfur atom leading to the S center dot center dot center dot O chalcogen bond has been visualized on the electrostatic potential surface and Laplacian isosurfaces close to the `reactive surface'. The electron localizability indicator (ELI) and Roby bond orders derived from the `experimental wave function' provide insights into the nature of S center dot center dot center dot O chalcogen bonding.
Resumo:
Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.
Resumo:
The triple perovskites Ba3ZnRu2-xIrxO9 with x = 0, 1, and 2 are insulating compounds in which Ru(Ir) cations form a dimer state. Polycrystalline samples of these materials were studied using neutron powder diffraction (NPD) at 10 and 295 K. No structural transition nor evidence of long range magnetic order was observed within the investigated temperature range. The results from structural refinements of the NPD data and its polyhedral analysis are presented, and discussed as a function of Ru/Ir content. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
The complexity associated with local structures continues to pose challenges with regard to the understanding of the structure-property relationship in Na1/2Bi1/2TiO3-based lead-free piezoceramics. (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 is an extensively studied system because of its interesting piezoelectric properties. Recently, a room temperature phase boundary was reported at x = 0.03 in this system Ma et al., Adv. Funct. Mater. 23, 5261 (2013)]. In the present work we have examined this subtle phase boundary using x-ray diffraction, neutron diffraction, dielectric measurements as a function of composition (x < 0.06), temperature, and electric field. Our results show that this boundary separates an R3c + Cc-like structural state for x < 0.03 from an R3c+ cubiclike structural state for 0.03 <= x <= 0.05 in the unpoled specimens. This phase boundary is characterized by an anomalous reduction in the depolarization temperature, and a suppression of the tetragonal distortion of the high temperature P4bm phase. Our results also provide the clue to understand the pathway leading to the cubiclike structure of the critical composition x = 0.06, known for its highest piezoelectric response.
Resumo:
Zn1-xMgxO ( <= x <= 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function of frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (similar to 1 x 10(4) at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell-Wagner type relaxation phenomena. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The present work deals with the structural and efficient down-shifting (DS) and up-conversion (UC) luminescence properties of erbium ion (Er3+) doped nanocrystalline barium sodium niobate (Ba2Na1-3xErxNb5O15, where x = 0, 0.02, 0.04 and 0.06) powders synthesized via novel citrate-based sol-gel route. The monophasic nature of the title compound was confirmed via x-ray powder diffraction followed by FT-IR studies. High-resolution transmission electron microscopy (HRTEM) facilitated the establishment of the nanocrystalline phase and the morphology of the crystallites. The Kubelka-Munk function, based on diffused reflectance studies and carried out on nano-sized crystallites, was employed to obtain the optical band-gap. The synthesized nanophosphor showed efficient DS/PL-photoluminescence and UC luminescence properties, which have not yet been reported so far in this material. The material emits intense DS green emission on excitation with 378 nm radiation. Interestingly, the material gives intense UC emission in the visible region dominated by green emission and relatively weak red emission on 976 nm excitation (NIR laser excitation). Such a dual-mode emitting nanophosphor could be very useful in display devices and for many other applications.
Resumo:
We report the localized charge carrier transport of two-phase composite Zn1-x Ni (x) O/NiO (0 a parts per thousand currency sign x a parts per thousand currency sign 1) using the temperature dependence of ac-resistivity rho (ac)(T) across the N,el temperature T (N) (= 523 K) of nickel oxide. Our results provide strong evidence to the variable range hopping of charge carriers between the localized states through a mechanism involving spin-dependent activation energies. The temperature variation of carrier hopping energy epsilon (h)(T) and nearest-neighbor exchange-coupling parameter J (ij)(T) evaluated from the small poleron model exhibits a well-defined anomaly across T (N). For all the composite systems, the average exchange-coupling parameter (J (ij))(AVG) nearly equals to 70 meV which is slightly greater than the 60-meV exciton binding energy of pure zinc oxide. The magnitudes of epsilon (h) (similar to 0.17 eV) and J (ij) (similar to 11 meV) of pure NiO synthesized under oxygen-rich conditions are consistent with the previously reported theoretical estimation based on Green's function analysis. A systematic correlation between the oxygen stoichiometry and, epsilon (h)(T) and J (ij)(T) is discussed.
Resumo:
This paper is aimed at establishing a statistical theory of rotational and vibrational excitation of polyatomic molecules by an intense IR laser. Starting from the Wigner function of quantum statistical mechanics, we treat the rotational motion in the classical approximation; the vibrational modes are classified into active ones which are coupled directly with the laser and the background modes which are not coupled with the laser. The reduced Wigner function, i.e., the Wigner function integrated over all background coordinates should satisfy an integro-differential equation. We introduce the idea of ``viscous damping'' to handle the interaction between the active modes and the background. The damping coefficient can be calculated with the aid of the well-known Schwartz–Slawsky–Herzfeld theory. The resulting equation is solved by the method of moment equations. There is only one adjustable parameter in our scheme; it is introduced due to the lack of precise knowledge about the molecular potential. The theory developed in this paper explains satisfactorily the recent absorption experiments of SF6 irradiated by a short pulse CO2 laser, which are in sharp contradiction with the prevailing quasi-continuum theory. We also refined the density of energy levels which is responsible for the muliphoton excitation of polyatomic molecules.
Resumo:
An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.
Resumo:
The dynamic evolution of a A system coupled by two strong coherent fields is investigated by taking spontaneously generated coherence (SGC) into account. By numericaly simulation, it is shown that the relative phase of the two coherent fields affects significantly the time scale to the coherent population trapping state. In addition, an analytical expression to the evolution rate which is consistent with the numerical results is given. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The spin dependent cross sections, σT1/2 and σT3/2 , and asymmetries, A∥ and A⊥ for 3He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process 3He(e,e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gerasimov-Drell-Hearn integral is presented at a 4-momentum transfer Q2 of 0.2-1.0 GeV2.
Also presented are results on the performance of the polarized 3He target. Polarization of 3He was achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The 3He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Resumo:
I. HgSe is deposited on various semiconductors, forming a semimetal/semiconductor "Schottky barrier" structure. Polycrystalline, evaporated HgSe produces larger Schottky barrier heights on n-type semiconductors than does Au, the most electronegative of the elemental metals. The barrier heights are about 0.5 eV greater than those of Au on ionic semiconductors such as ZnS, and 0.1 to 0.2 eV greater for more covalently bonded semiconductors. A novel structure,which is both a lattice matched heterostructure and a Schottky barrier, is fabricated by epitaxial growth of HgSe on CdSe using hydrogen transport CVD. The Schottky barrier height for this structure is 0.73 ± 0.02 eV, as measured by the photoresponse method. This uncertainty is unusually small; and the magnitude is greater by about a quarter volt than is achievable with Au, in qualitative agreement with ionization potential arguments.
II . The Schottky barrier height of Au on chemically etched n-Ga1-x AlxAs was measured as a function of x. As x increases, the barrier height rises to a value of about 1.2 eV at x ≈ 0.45 , then decreases to about 1.0 eV as x approaches 0.83. The barrier height deviates in a linear way from the value predicted by the "common anion" rule as the AlAs mole fraction increases. This behavior is related to chemical reactivity of the Ga1-x AlxAs surface.