987 resultados para Cobalt-free composite cathode


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and convenient method for preparation of cobalt hexacyanoferrate (CoHCF) nanowires by electrodeposition was reported. Multiwall carbon nanotubes (MWNTs) were used as templates to fabricate CoHCF nanowires. MWNTs could affect the size of CoHCF nanoparticles and made them grow on the sidewalls of carbon nanotubes during the process of electrodeposition. Thus CoHCF nanowires could be obtained by this method. Field-emission scanning electron microscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize these nanowires. These results showed the CoHCF nanowires could be easily and successfully obtained and it gave a novel approach to prepare inorganic nanowires.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel composite resins possessing good luminescent properties have been synthesized through a free radical copolymerization of styrene, alpha-methylacrylic acid and the binary or ternary complexes of lanthanide ions (Eu3+ and Tb3+). These polymer-based composite resins not only possess good transparency and mechanical performance but also exhibit an intense narrow band emission of lanthanide complexes under UV excitation. We characterized the molecular structure, physical and mechanical performance, and luminescent properties of the composite resins. Spectra investigations indicate that alpha-methyl-acrylic acid act as both solubilizer and ligand. Photoluminescence measurements indicate that the lanthanide complexes show superior emission lines and higher intensities in the resin matrix than in the corresponding pure complex powders, which can be attributed to the restriction of molecular motion of complexes by the polymer chain networks and the exclusion of water molecules from the complex. We also found that the luminescence intensity decreased with increasing content of alpha-methylacrylic acid in the copolymer system. The lifetime of the lanthanide complexes also lengthened when they were incorporated in the polymer matrix. In addition, we found that the relationships between emission intensity and Tb (Eu) content exhibit some extent of concentration quenching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel polytetrafluoroethylene (PTFE)-reinforced multilayer self-humidifying composite membrane is developed. The membrane is composed of Nafion-impregnated porous PTFE composite as the central layer and nanosized SiO2 supported Pt catalyst imbedded into Nafion as the two side layers. The proton exchange membrane (PEM) fuel cells employing the self-humidifying membrane (20 mu m thick) under dry H-2/O-2 gave a peak power density of 0.95 W/cm(2) and an open-circuit voltage of 1.032 V. The good membrane performance is attributed to hygroscopic Pt-SiO2 catalyst at the two side layers, which results in enhanced anode side self-humidification function and decreased cathode polarization. (c) 2005 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal stress in a Sn3.5Ag1Cu half-bump solder joint under a 3.82×108 A/m2 current stressing was analyzed using a coupled-field simulation. Substantial thermal stress accumulated around the Al-to-solder interface, especially in the Ni+(Ni,Cu)3Sn4 layer, where a maximal stress of 138 MPa was identified. The stress gradient in the Ni layer was about 1.67×1013 Pa/m, resulting in a stress migration force of 1.82×10-16 N, which is comparable to the electromigration force, 2.82×10-16 N. Dissolution of the Ni+(Ni,Cu)3Sn4 layer, void formation with cracks at the anode side, and extrusions at the cathode side were observed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The postbuckling behaviour of a panel with blade-stiffeners incorporating tapered flanges was experimentally investigated. A new failure mechanism was identified for this particular type of stiffener. Failure was initiated by mid-plane delamination at the free edge of the postbuckled stiffener web at a node-line. This was consistent with an interlaminar shear stress failure and was calculated from strain gauge measurements using an approximate analysis based on lamination theory and incorporating edge effects. The critical shear stress was found to agree well with the shear strength obtained from a three-point bending test of the web laminate. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of a combined experimental and numerical study of hat-stiffened co-cured carbon-fibre composite panels loaded in uniaxial compression are presented. All panels consisted of two integrated stiffeners separated by an eight-ply thick skin bay of lay-up [*45/0190], . The effects of a 100 mm circular cutout in the skin was also investigated. The ultimate strength of all panels was governed by the load carrying capacity of the stiffeners. A change in the skin's buckling mode-shape was also observed for all panels loaded deep in the postbuckling region. The strains induced at the interior free-edge were not found to be critical. Non-linear finite element results correlated well with the prebuckling and initial postbuckling strain and displacements results obtained by experiment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron microscopy (SEM). The embedded particles were found to get pressed into the matrix which helps resisting further wearing process for composite samples. However, random orientation of microcuts and microfallow were seen for ENC sample but more uniform wearing was observed for EN sample. The composite coating with low content of SiC was worn minimum. Early penetration into the substrate was seen for samples with higher SiC content. Microhardness was improved after heat treatment for all the samples containing various SiC content. Under dry sliding condition, inclusion of particles in the matrix did not improve the wearing resistance performance in as-deposited state. The wearing worsened as the content of the particles increased generally. However, on heat treatment, the composite coatings exhibited improved wear resistance and the best result was obtained from the one with low particle contents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface behaviour is of paramount importance as failure and degradation tend to initiate from the surface. Electroless composite coating (NiP/SiC) was developed using SiC as reinforcing particles. As heat treatment plays a vital role in electroless nickel coating owing to the changes in microstructure, phase structure and mechanical properties, an insight at the interface changes in chemistry and micromechanical behaviour was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and microindentation techniques. Corrosion performance was analysed using electrochemical impedance spectroscopy (EIS). Absence of zinc and migration of copper at the interface was detected. Brittleness and microcracks was seen long the interface when indenting at load of 500 gf (Vickers). Corrosion performance is weaker than particles free coating. However, a thin blanket of NiP could enhance the resistance to corrosive medium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of heat treatment. The microhardness is increased on incorporation of SiC in Ni-P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature. Overall, the composite coating (ENC) was found to be superior as compared to particles free (EN) coating in both as-deposited and heat-treated conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A three-dimensional (3D) graphene-Co3O4 electrode was prepared by a two-step method in which graphene was initially deposited on a Ni foam with Co3O4 then grown on the resulting graphene structure. Cross-linked Co3O4 nanosheets with an open pore structure were fully and vertically distributed throughout the graphene skeleton. The free-standing and binder-free monolithic electrode was used directly as a cathode in a Li-O2 battery. This composite structure exhibited enhanced performance with a specific capacity of 2453 mA h g-1 at 0.1 mA cm-2 and 62 stable cycles with 583 mA h g-1 (1000 mA h gcarbon-1). The excellent electrochemical performance is associated with the unique architecture and superior catalytic activity of the 3D electrode. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of novel, water-stable redox-active cobalt complexes of the C-functionalized tripodal ligands tris(pyrazolyl)methane XC(pz)(3) (X = HOCH2, CH2OCH2Py or CH2OSO2Me) are reported along with their effects on DNA. The compounds were isolated as air-stable solids and fully characterized by IR and FIR spectroscopies, ESI-MS(+/-), cyclic voltammetry, controlled potential electrolysis, elemental analysis and, in a number of cases, also by single-crystal X-ray diffraction. They showed moderate cytotoxicity in vitro towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma human cancer cell lines. This viability loss is correlated with an increase of tumour cell lines apoptosis. Reactivity studies with biomolecules, such as reducing agents, H2O2, plasmid DNA and UV-visible titrations were also performed to provide tentative insights into the mode of action of the complexes. Incubation of Co(II) complexes with pDNA induced double strand breaks, without requiring the presence of any activator. This pDNA cleavage appears to be mediated by O-centred radical species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dans cette thèse, nous démontrons des travaux sur la synthèse à faible coût des matériaux de cathode et l'anode pour les piles lithium-ion. Pour les cathodes, nous avons utilisé des précurseurs à faible coût pour préparer LiFePO4 et LiFe0.3Mn0.7PO4 en utilisant une méthode hydrothermale. Tout d'abord, des matériaux composites (LiFePO4/C) ont été synthétisés à partir d'un précurseur de Fe2O3 par une procédé hydrothermique pour faire LiFePO4(OH) dans une première étape suivie d'une calcination rapide pour le revêtement de carbone. Deuxièmement, LiFePO4 avec une bonne cristallinité et une grande pureté a été synthétisé en une seule étape, avec Fe2O3 par voie hydrothermale. Troisièmement, LiFe0.3Mn0.7PO4 a été préparé en utilisant Fe2O3 et MnO comme des précurseurs de bas coûts au sein d'une méthode hydrothermale synthétique. Pour les matériaux d'anode, nous avons nos efforts concentré sur un matériau d'anode à faible coût α-Fe2O3 avec deux types de synthèse hydrothermales, une a base de micro-ondes (MAH) l’autre plus conventionnelles (CH). La nouveauté de cette thèse est que pour la première fois le LiFePO4 a été préparé par une méthode hydrothermale en utilisant un précurseur Fe3+ (Fe2O3). Le Fe2O3 est un précurseur à faible coût et en combinant ses coûts avec les conditions de synthèse à basse température nous avons réalisé une réduction considérable des coûts de production pour le LiFePO4, menant ainsi à une meilleure commercialisation du LiFePO4 comme matériaux de cathode dans les piles lithium-ion. Par cette méthode de préparation, le LiFePO4/C procure une capacité de décharge et une stabilité de cycle accrue par rapport une synthétisation par la méthode à l'état solide pour les mêmes précurseurs Les résultats sont résumés dans deux articles qui ont été récemment soumis dans des revues scientifiques.