980 resultados para Cloning, Organism
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two L-amino acid oxidases (LAAOs) were identified by random sequencing of cDNA libraries from the venom glands of Bothrops moojeni (BmooLAAO) and Bothrops jararacussu (Bjussu LAAO). Phylogenetic analysis involving other SV-LAAOs showed sequence identities within the range 83-87% being closely related to those from Agkistrodon and Trimeresurus. Molecular modeling experiments indicated the FAD-binding, substrate-binding, and helical domains of Bmoo and Bjussu LAAOs. The RMS deviations obtained by the superposition of those domains and that from Calloselasma rhodostoma LAAO crystal structure confirm the high degree of structural similarity between these enzymes. Purified BjussuLAAO-I and BmooLAAO-I exhibited antiprotozoal activities which were demonstrated to be hydrogen-peroxide mediated. This is the first report on the isolation and identification of cDNAs encoding LAAOs from Bothrops venom. The findings here reported contribute to the overall structural elucidation of SV-LAAOs and will advance the understanding on their mode of action. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
Background: Biopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli ( Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.Results: Here we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-beta-D-thiogalactopyranoside ( IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.Conclusion: The recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work reports the characterization of Fastuosain, a novel cysteine protease of 25kDa, purified from the unripe fruits of Bromelia fastuosa, a wild South American Bromeliaceae. Proteolytic activity, measured using casein and synthetic substrates, was dependent on the presence of thiol reagents, having maximum activity at pH 7.0. The present work reports cDNA cloning of Fastuosain; cDNA was amplified by PCR using specific primers. The product was 1096pb long. Mature fastuosain has 217 residues, and with the proregion has a total length of 324 residues. Its primary sequence showed high homology with ananain(74%), stem bromelain (66%) and papain (44%).
Resumo:
Parkia platycephala lectin 2 was purified from Parkia platycephala (Leguminosae, Mimosoideae) seeds by affinity chromatography and RP-HPLC. Equilibrium sedimentation and MS showed that Parkia platycephala lectin 2 is a nonglycosylated monomeric protein of molecular mass 29 407 +/- 15 Da, which contains six cysteine residues engaged in the formation of three intramolecular disulfide bonds. Parkia platycephala lectin 2 agglutinated rabbit erythrocytes, and this activity was specifically inhibited by N-acetylglucosamine. In addition, Parkia platycephala lectin 2 hydrolyzed beta(1-4) glycosidic bonds linking 2-acetoamido-2-deoxy-beta-D-glucopyranose units in chitin. The full-lengthamino acid sequence of Parkia platycephala lectin 2, determined by N-terminal sequencing and cDNA cloning, and its three-dimensional structure, established by X-ray crystallography at 1.75 angstrom resolution, showed that Parkia platycephala lectin 2 is homologous to endochitinases of the glycosyl hydrolase family 18, which share the (beta alpha)(8) barrel topology harboring the catalytic residues Asp125, Glu127, and Tyr182.
Resumo:
A peptide-polysaccharide, a peptide-rhamnomannan, was isolated from the pathogenic yeast form of the fungus Sporothrix schenckii. This substance, which may play a role in fungal virulence, was tested in an animal model of systemic disease, and depression of the immune response was observed in the animals between the 4th and 6th week of infection. Concomitantly, this compound showed mitogenic activity when challenged with normal lymphocytes and was also found to be involved in the inflammatory response. These results provide further information for the understanding of fungal implantation in tissues and of the pathogenicity of this systemic mycosis.
Resumo:
The Leishmania amazonensis telomerase gene was cloned by a polymerase chain reaction-based strategy using primers designed from a Leishmania major sequence that shared similarities with conserved telomerase motifs. The genes from three other species were cloned for comparative purposes. A ClustalW multiple-sequence alignment demonstrated that the Leishmania telomerases show greater homology with each other than with the proteins of other kinetoplastids and eukaryotes. Characterization experiments indicated that the putative Leishmania telomerase gene was probably in single copy and located in the largest chromosomes. A single messenger ribonucleic acid transcript was found in promastigotes. Phylogenetic analysis suggested that Leishmania telomerase might represent a liaison between the oldest and the newest branches of telomerases.