986 resultados para Climatic changes -- Research


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two independent multidisciplinary studies of climatic change during the glacial–Holocene transition (ca. 14,000–9,000 calendar yr B.P.) from Norway and Switzerland have assessed organism responses to the rapid climatic changes and made quantitative temperature reconstructions with modern calibration data sets (transfer functions). Chronology at Kråkenes, western Norway, was derived from calibration of a high-resolution series of 14C dates. Chronologies at Gerzensee and Leysin, Switzerland, were derived by comparison of δ18O in lake carbonates with the δ18O record from the Greenland Ice Core Project. Both studies demonstrate the sensitivity of terrestrial and aquatic organisms to rapid temperature changes and their value for quantitative reconstruction of the magnitudes and rates of the climatic changes. The rates in these two terrestrial records are comparable to those in Greenland ice cores, but the actual temperatures inferred apply to the terrestrial environments of the two regions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While the topic of climate change is controversial, the world needs to take a precautionary approach to reduce carbon dioxide emissions. With growing populations and increasing energy demands, solutions to cleaner energy need to be developed and implemented. In order to successfully reduce carbon dioxide emissions, a global carbon pricing policy needs to be developed that includes all countries and allows each region to utilize the best clean energy technology options along with economic incentives that will be the most effective. The research conducted in this project validates the hypothesis that placing a monetary price on carbon will allow natural, technological, and financial resources to come together to implement a feasible energy solution that will reduce global carbon dioxide emissions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A detailed sedimentological and paleontological analysis of the uppermost Miocene (Messinian)–Pliocene boundary at the northern border of the Bajo Segura Basin, southeastern Spain, was carried out in order to describe the evolution of the regional paleocoastline during the Pliocene reflooding of the Mediterranean immediately after the sea-level fall related to the Messinian Salinity Crisis. Multiple trace fossils typical of firm- and hardgrounds were recognized, allowing identification of Glossifungites (two different types), Entobia, and Gnathichnus ichnofacies. Trace-fossil analysis showed that lithology and media consistency exerted considerable control on the development of the different ichnocoenoses and that there was a clear decrease in hydrodynamic energy from a coastal to a shallow-water shelf environment related to progressive sea-level rise. Ichnological and sedimentological data provide evidence that the definitive flooding of the Mediterranean was rapid and synchronous throughout the northern margin of the Bajo Segura Basin. The following model for the Pliocene transgression in the study area is therefore proposed: (1) the marine ingression penetrated along the incised paleovalleys carved as a consequence of the fall in sea level, where the first two Pliocene systems were deposited (P0–P1); (2) during the maximum flooding surface of the transgression, the sea overflowed the margins of the paleovalleys and extended throughout the entire northern margin of the basin; and (3) the third Pliocene system was deposited, forming the lower part of a highstand systems tract (P2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the ARCTIC '91-Expedition with RV 'Polarstern', several Multicorer and Kastenlot-cores were recovered along a profile crossing the eastern part of the Arctic Ocean. The investigated cores consist mainly of clayey-silty sediments, and some units with a higher sand content. In this thesis, detailed sedimentological and organic-geochemical investigations were performed. In part, the near surface sediments were AMS-14C dated making it possible to Interpret the results of the organic-geochemical investigations in terms of climatic changes (isotopic stage 2 to the Holocene). The more or less absence of foraminifers within the long cores prevented the development of an oxygen isotope stratigraphy. Only the results of core PS2174-5 from the Amundsen-Basin could be discussed in terms of the climatic change that could be dated back to oxygen isotope stage 7. Detailed organic-geochemical investigations in the central Arctic Ocean are rare. Therefore, several different organic-geochemical methods were used to obtain a wide range of data for the Interpretation of the organic matter. The high organic carbon content of the surface sediments is derived from a high input of terrigenous organic matter. The terrigenous organic material is most likely entrained within the sea-ice On the Siberian shelves and released during ice-drift over the Arctic Ocean. Other factors such as iceberg-transport and turbidites are also responsible for the high input of terrigenous organic matter. Due to the more or less closed sea-ice Cover, the Arctic Ocean is known as a low productivity system. A model shows, that only 2 % of the organic matter in central Arctic Ocean sediments is of a marine origin. The influence of the West-Spitsbergen current increases the marine organic matter content to 16 %. Short chain n-alkanes (C17 and C19) can be used as a marker of marine productivity in the Arctic Ocean. Higher contents of short chain n-alkanes exist in surface sediments of the Lomonosov-Ridge and the Makarov-Basin, indicating a higher marine productivity caused by a reduced sea-ice Cover. The Beaufort-Gyre and Transpolar-Drift drift Patterns could be responsible for the lower sea-ice distribution in this region. The sediments of Stage 2 and Stage 3 in this region are also dominated by a higher content of short chain-nalkanes indicating a comparable ice-drift Pattern during that time. The content and composition of organic carbon in the sediments of core PS2174-5 reflect glaciallinterglacial changes. Interglacial stages 7 and 5e show a low organic carbon content (C 0,5 %) and, as indicated by high hydrogen-indices, low CIN-ratios, higher content of n-alkanes (C17 and C19) and a higher opal content, a higher marine productivity. In the Holocene, a high content of foraminifers, coccoliths, ostracodes, and sponge spicules indicate higher surface-water productivity. Nevertheless, the low hydrogenindices reveal a high content of terrigenous organic matter. Therefore, the Holocene seems to be different from interglacials 7 and 5e. During the glacial periods (stages 6, upper 5, and 4), TOC-values are significantly higher (0.7 to 1.3 %). In addition, low hydrogen-indices, high CIN-ratios, low short chain n-alkanes and opal contents provide evidence for a higher input of terrigenous organic matter and reduced marine productivity. The high lignin content in core sections with high TOC-contents, substantiates the high input of terrigenous organic matter. Changes in the content and composition of the organic carbon is believed to vary with the fluctuations in sea-level and sea-ice coverage.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This chapter provides a review of proxy data from a variety of natural archives sampled in the Wollaston Forland region, central Northeast Greenland. The data are used to describe long-term environmental and climatic changes. The focus is on reconstructing the Holocene conditions particularly in the Zackenberg area. In addition, this chapter provides an overview of the archaeological evidence for prehistoric occupation of the region. The Zackenberg area has been covered by the Greenland Ice Sheet several times during the Quaternary. At the Last Glacial Maximum (LGM, about 22,000 years BP), temperatures were much lower than at present, and only very hardy organisms may have survived in the region, even if ice-free areas existed. Marked warming at around 11,700 years BP led to ice recession, and the Zackenberg area was deglaciated in the early Holocene, prior to 10,100 years BP. Rapid early Holocene land emergence was replaced by a slight transgression in the late Holocene. During the Holocene, summer solar insolation decreased in the north. Following deglaciation of the region, summer temperatures probably peaked in the early to mid-Holocene, as indicated by the occurrence of a southern beetle species. However, the timing for the onset of the Holocene thermal maximum is rather poorly constrained because of delayed immigration of key plant species. During the thermal maximum, the mean July temperature was at least 2-3°C higher than at present. Evidence for declining summer temperatures is seen at around 5500, 4500 and 3500 years BP. The cooling culminated during the Little Ice Age that peaked about 100-200 years ago. The first plants that immigrated to the region were herbs and mosses. The first dwarf shrubs arrived in Northeast Greenland prior to 10,400 years BP, and dwarf birch arrived around 8800 years BP. The first people arrived about 4500 years BP, but the region was depopulated several times before the last people disappeared some time after 1823 AD, perhaps as a consequence of poor hunting conditions during the peak of the Little Ice Age.