910 resultados para Cholesterol transporters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lowering LDL cholesterol with statin regimens reduces the risk of myocardial infarction, ischaemic stroke, and the need for coronary revascularisation in people without kidney disease, but its effects in people with moderate-to-severe kidney disease are uncertain. The SHARP trial aimed to assess the efficacy and safety of the combination of simvastatin plus ezetimibe in such patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage cholesterol homeostasis is a key process involved in the initiation and progression of atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) regulate the transcription of the genes involved in cholesterol homeostasis and thus represent an important therapeutic target in terms of reducing atherosclerosis. Conjugated linoleic acid (CLA) is a potent anti-atherogenic dietary fatty acid in animal models of atherosclerosis and is capable of activating PPARs in vitro and in vivo. Therefore, this study examined whether the anti-atherogenic effects of CLA in vivo could be ascribed to altered cholesterol homeostasis in macrophages and macrophage derived foam cells. Of several genes that regulate cholesterol homeostasis investigated, CLA had most effect on the class B scavenger receptor CD36. The cis-9,trans-11 CLA (c9,t11-CLA) and trans-10,cis-12 CLA (t10,c12-CLA) isomers augmented CD36 mRNA expression (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two novel mutations were identified in a compound heterozygous male with lecithin:cholesterol acyltransferase (LCAT) deficiency. Exon sequence determination of the LCAT gene of the proband revealed two novel heterozygous mutations in exons one (C110T) and six (C991T) that predict non-conservative amino acid substitutions (Thr13Met and Pro307Ser, respectively). To assess the distinct functional impact of the separate mutant alleles, studies were conducted in the proband's 3-generation pedigree. The compound heterozygous proband had negligible HDL and severely reduced apolipoprotein A-I, LCAT mass, LCAT activity, and cholesterol esterification rate (CER). The proband's mother and two sisters were heterozygous for the Pro307Ser mutation and had low HDL, markedly reduced LCAT activity and CER, and the propensity for significant reductions in LCAT protein mass. The proband's father and two daughters were heterozygous for the Thr13Met mutation and also displayed low HDL, reduced LCAT activity and CER, and more modest decrements in LCAT mass. Mean LCAT specific activity was severely impaired in the compound heterozygous proband and was reduced by 50% in individuals heterozygous for either mutation, compared to wild type family members. It is also shown that the two mutations impair both catalytic activity and expression of the circulating protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dietary flavonoid intake, especially berry flavonoids, has been associated with reduced risks of cardiovascular disease (CVD) in large prospective cohorts. Few clinical studies have examined the effects of dietary berries on CVD risk factors. We examined the hypothesis that freeze-dried strawberries (FDS) improve lipid and lipoprotein profiles and lower biomarkers of inflammation and lipid oxidation in adults with abdominal adiposity and elevated serum lipids. In a randomized dose-response controlled trial, 60 volunteers [5 men and 55 women; aged 49 ± 10 y; BMI: 36 ± 5 kg/m2 (means ± SDs)] were assigned to consume 1 of the following 4 beverages for 12 wk: 1) low-dose FDS (LD-FDS; 25 g/d); 2) low-dose control (LD-C); 3) high-dose FDS (HD-FDS; 50 g/d); and 4) high-dose control (HD-C). Control beverages were matched for calories and total fiber. Blood draws, anthropometrics, blood pressure, and dietary data were collected at screening (0 wk) and after 12-wk intervention. Dose-response analyses revealed significantly greater decreases in serum total and LDL cholesterol and nuclear magnetic resonance (NMR)–derived small LDL particle concentration in HD-FDS [33 ± 6 mg/dL, 28 ± 7 mg/dL, and 301 ± 78 nmol/L, respectively (means ± SEMs)] vs. LD-FDS (−3 ± 11 mg/dL, −3 ± 9 mg/dL, and −28 ± 124 nmol/L, respectively) over 12 wk (0–12 wk; all P < 0.05). Compared with controls, only the decreases in total and LDL cholesterol in HD-FDS remained significant vs. HD-C (0.7 ± 12 and 1.4 ± 9 mg/dL, respectively) over 12 wk (0–12 wk; all P < 0.05). Both doses of strawberries showed a similar decrease in serum malondialdehyde at 12 wk (LD-FDS: 1.3 ± 0.2 μmol/L; HD-FDS: 1.2 ± 0.1 μmol/L) vs. controls (LD-C: 2.1 ± 0.2 μmol/L; HD-C: 2.3 ± 0.2 μmol/L) (P < 0.05). In general, strawberry intervention did not affect any measures of adiposity, blood pressure, glycemia, and serum concentrations of HDL cholesterol and triglycerides, C-reactive protein, and adhesion molecules. Thus, HD-FDS exerted greater effects in lowering serum total and LDL cholesterol and NMR-derived small LDL particles vs. LD-FDS in the 12-wk study. These findings warrant additional investigation in larger trials. This trial was registered at clinicaltrials.gov as NCT01883401.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Dietary cocoa is an important source of flavonoids and is associated with favorable cardiovascular disease effects, such as improvements in vascular function and lipid profiles, in nondiabetic adults. Type 2 diabetes (T2D) is associated with adverse effects on postprandial serum glucose, lipids, inflammation, and vascular function.

OBJECTIVE: We examined the hypothesis that cocoa reduces metabolic stress in obese T2D adults after a high-fat fast-food-style meal.

METHODS: Adults with T2D [n = 18; age (means ± SEs): 56 ± 3 y; BMI (in kg/m(2)): 35.3 ± 2.0; 14 women; 4 men) were randomly assigned to receive cocoa beverage (960 mg total polyphenols; 480 mg flavanols) or flavanol-free placebo (110 mg total polyphenols; <0.1 mg flavanols) with a high-fat fast-food-style breakfast [766 kcal, 50 g fat (59% energy)] in a crossover trial. After an overnight fast (10-12 h), participants consumed the breakfast with cocoa or placebo, and blood sample collection [glucose, insulin, lipids, and high-sensitivity C-reactive protein (hsCRP)] and vascular measurements were conducted at 0.5, 1, 2, 4, and 6 h postprandially on each study day. Insulin resistance was evaluated by homeostasis model assessment.

RESULTS: Over the 6-h study, and specifically at 1 and 4 h, cocoa increased HDL cholesterol vs. placebo (overall Δ: 1.5 ± 0.8 mg/dL; P ≤ 0.01) but had no effect on total and LDL cholesterol, triglycerides, glucose, and hsCRP. Cocoa increased serum insulin concentrations overall (Δ: 5.2 ± 3.2 mU/L; P < 0.05) and specifically at 4 h but had no overall effects on insulin resistance (except at 4 h, P < 0.05), systolic or diastolic blood pressure, or small artery elasticity. However, large artery elasticity was overall lower after cocoa vs. placebo (Δ: -1.6 ± 0.7 mL/mm Hg; P < 0.05), with the difference significant only at 2 h.

CONCLUSION: Acute cocoa supplementation showed no clear overall benefit in T2D patients after a high-fat fast-food-style meal challenge. Although HDL cholesterol and insulin remained higher throughout the 6-h postprandial period, an overall decrease in large artery elasticity was found after cocoa consumption. This trial was registered at clinicaltrials.gov as NCT01886989.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ATP binding cassette (ABC) and solute carrier (SLC) transporters are responsible for the majority of the transcellular movement of various substrates, including drugs, among epithelial cells. Despite the well characterized regulation of influx (SLC) and efflux (ABC) transporters by endogenous mediators, such as inflammatory cytokines, little is known about how changes in oxygen levels may affect expression of these transporters. In this study we showed that the expression of SLC22A4, SLC22A5, SLC22A1, SLC02B1, SLC10A2, ABCC2 and ABCC3 transporters is upregulated by hypoxia in HT29 colon carcinoma cells, but not in HepG2 hepatocarcinoma cells. Moreover, OCTN1 (SLC22A4), OCT1 (SLC22A1) and OATP-B (SLC02B1) transporter expression is also induced by inflammatory cytokines but in a smaller extent than in hypoxia. Furthermore our experiments indicate that there is no cross talk between HIF-1 and NF-κB pathways in HT-29 cells, but these two pathways act simultaneously activating common genes, such as, some SLC and ABC transporters. Our preliminary results from studies with an in vivo murine model of colitis, suggest that HIF-1is stabilized and OCTN1 is strongly induced during severe inflammation, which can be relevant for a recovery from the inflammatory process. We have also been interested in the distribution of HIF-1α variants among different ethnic groups as well as their contribution for cancer risk. Thus, we have demonstrated that there is an ethnicity-related variation in the frequency of the C1772T (P582S) single nucleotide polymorphism (SNP) in the HIF-1α gene. Furthermore, we performed a case-control study in a breast cancer population and our results suggest that there is no association between this SNP or the rare G1790A (A588T) SNP and the incidence of breast cancer. Taken together, the results obtained in this study contribute to a better knowledge of drug influx and efflux during hypoxia and inflammation as well as to the understanding of the pharmacogenetic variability of the HIF-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Bioquímica pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work has as objective to contribute for the elucidation of the mechanism associated with Pb detoxification, using the yeast Saccharomyces cerevisiae as a model organism. The deletion of GTT1 or GTT2 genes, coding for functional glutathione transferases (GST) enzymes in S. cerevisiae, caused an increased susceptibility to high Pb concentrations (500-1000 μmol L(-1)). These results suggest that the formation of glutathione-Pb conjugate (GS-Pb), dependent of GSTs, is important in Pb detoxification. The involvement of ATP-binding cassette (ABC) vacuolar transporters, belonging to class C subfamily (ABCC) in vacuolar compartmentalization of Pb, was evaluated. For this purpose, mutant strains disrupted in YCF1, VMR1, YBT1 or BPT 1 genes were used. All mutants tested, without vacuolar ABCC transporters, presented an increased sensitivity to 500-1000 μmol L(-1) Pb comparative to wild-type strain. Taken together, the obtained results suggest that Pb detoxification, by vacuolar compartmentalization, can occur as a result of the concerted action of GSTs and vacuolar ABCC transporters. Pb is conjugated with glutathione, catalysed by glutathione transferases and followed to the transport of GS-Pb conjugate to the vacuole by ABCC transporters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cation transporters/channels are key players in a wide range of physiological functions in plants, including cell signaling, osmoregulation, plant nutrition and metal tolerance. The recent identification of genes encoding some of these transport systems has allowed new studies toward further understanding of their integrated roles in plant. This review summarizes recent discoveries regarding the function and regulation of the multiple systems involved in cation transport in plant cells. The role of membrane transport in the uptake, distribution and accumulation of cations in plant tissues, cell types and subcellular compartments is described. We also discuss how the knowledge of inter- and intra-species variation in cation uptake, transport and accumulation as well as the molecular mechanisms responsible for these processes can be used to increase nutrient phytoavailability and nutrients accumulation in the edible tissues of plants. The main trends for future research in the field of biofortification are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfur (S) is an essential macronutrient for all living organisms. Plants require large amounts of sulfate for growth and development, and this serves as a major entry point of sulfate into the food web. Plants acquire S in its ionic form from the soil; they have evolved tightly controlled mechanisms for the regulation of sulfate uptake in response to its external and internal availability. In the model plant Arabidopsis thaliana, the first key step in sulfate uptake is presumed to be carried out exclusively by only two high-affinity sulfate transporters: SULTR1;1 and SULTR1;2. A better understanding of the mode of regulation for these two transporters is crucial because they constitute the first determinative step in balancing sulfate in respect to its supply and demand. Here, we review the recent progress achieved in our comprehension of (i) mechanisms that regulate these two high-affinity sulfate transporters at the transcriptional and post-transcriptional levels, and (ii) their structure-function relationship. Such progress is important to enable biotechnological and agronomic strategies aimed at enhancing sulfate uptake and improving crop yield in S-deficient soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lithium-pilocarpine model mimics most features of human temporal lobe epilepsy. Following our prior studies of cerebral metabolic changes, here we explored the expression of transporters for glucose (GLUT1 and GLUT3) and monocarboxylates (MCT1 and MCT2) during and after status epilepticus (SE) induced by lithium-pilocarpine in PN10, PN21, and adult rats. In situ hybridization was used to study the expression of transporter mRNAs during the acute phase (1, 4, 12 and 24h of SE), the latent phase, and the early and late chronic phases. During SE, GLUT1 expression was increased throughout the brain between 1 and 12h of SE, more strongly in adult rats; GLUT3 increased only transiently, at 1 and 4h of SE and mainly in PN10 rats; MCT1 was increased at all ages but 5-10-fold more in adult than in immature rats; MCT2 expression increased mainly in adult rats. At all ages, MCT1 and MCT2 up-regulation was limited to the circuit of seizures while GLUT1 and GLUT3 changes were more widespread. During the latent and chronic phases, the expression of nutrient transporters was normal in PN10 rats. In PN21 rats, GLUT1 was up-regulated in all brain regions. In contrast, in adult rats GLUT1 expression was down-regulated in the piriform cortex, hilus and CA1 as a result of extensive neuronal death. The changes in nutrient transporter expression reported here further support previous findings in other experimental models demonstrating rapid transcriptional responses to marked changes in cerebral energetic/glucose demand.