946 resultados para Chemistry, Physical and theoretical
Resumo:
Working with nuclear magnetic resonance (NMR) in quadrupolar spin systems, in this paper we transfer the concept of atomic coherent state to the nuclear spin context, where it is referred to as pseudonuclear spin coherent state (pseudo-NSCS). Experimentally, we discuss the initialization of the pseudo- NSCSs and also their quantum control, implemented by polar and azimuthal rotations. Theoretically, we compute the geometric phases acquired by an initial pseudo-NSCS on undergoing three distinct cyclic evolutions: (i) the free evolution of the NMR quadrupolar system and, by analogy with the evolution of the NMR quadrupolar system, that of (ii) single-mode and (iii) two-mode Bose-Einstein Condensate like system. By means of these analogies, we derive, through spin angular momentum operators, results equivalent to those presented in the literature for orbital angular momentum operators. The pseudo-NSCS description is a starting point to introduce the spin squeezed state and quantum metrology into nuclear spin systems of liquid crystal or solid matter.
Resumo:
In the last decade considerable attention has been devoted to the rewarding use of Green Chemistry in various synthetic processes and applications. Green Chemistry is of special interest in the synthesis of expensive pharmaceutical products, where suitable adoption of “green” reagents and conditions is highly desirable. Our project especially focused in a search for new green radical processes which might also find useful applications in the industry. In particular, we have explored the possible adoption of green solvents in radical Thiol-Ene and Thiol-Yne coupling reactions, which to date have been normally performed in “ordinary” organic solvents such as benzene and toluene, with the primary aim of applying those coupling reactions to the construction of biological substrates. We have additionally tuned adequate reaction conditions which might enable achievement of highly functionalised materials and/or complex bioconjugation via homo/heterosequence. Furthermore, we have performed suitable theoretical studies to gain useful chemical information concerning mechanistic implications of the use of green solvents in the radical Thiol-Yne coupling reactions.
Resumo:
Comparison of the crystal structure of a transition state analogue that was used to raise catalytic antibodies for the benzoyl ester hydrolysis of cocaine with structures calculated by ab initio, semiempirical, and solvation semiempirical methods reveals that modeling of solvation is crucial for replicating the crystal structure geometry. Both SM3 and SM2 calculations, starting from the crystal structure TSA I, converged on structures similar to the crystal structure. The 3-21G(*)/HF, 6-31G*/HF, PM3, and AM1 calculations converged on structures similar to each other, but these gas-phase structures were significantly extended relative to the condensed phase structures. Two transition states for the hydrolysis of the benzoyl ester of cocaine were located with the SM3 method. The gas phase calculations failed to locate reasonable transition state structures for this reaction. These results imply that accurate modeling of the potential energy surfaces for the hydrolysis of cocaine requires solvation methods.
Resumo:
An efficient synthetic approach to a symmetrically functionalized tetrathiafulvalene (TTF) derivative with two diamine moieties, 2-[5,6-diamino-4,7-bis(4-pentylphenoxy)-1,3-benzodithiol-2-ylidene]-4,7- bis(4-pentylphenoxy)-1,3-benzodithiole-5,6-diamine (2), is reported. The subsequent Schiff-base reactions of 2 afford large p-conjugated multiple donoracceptor (DA) arrays, for example, the triad 2-[4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxalin-2-ylidene]-4,9 -bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxaline (8) and the corresponding tetrabenz[bc,ef,hi,uv]ovalene-fused pentad 1, in good yields and high purity. The novel redox-active nanographene 1 is so far the largest known TTF-functionalized polycyclic aromatic hydrocarbon (PAH) with a well-resolved 1H NMR spectrum. The electrochemically highly amphoteric pentad 1 and triad 8 exhibit various electronically excited charge-transfer states in different oxidation states, thus leading to intense optical intramolecular charge-transfer (ICT) absorbances over a wide spectral range. The chemical and electrochemical oxidations of 1 result in an unprecedented TTF+ radical cation dimerization, thereby leading to the formation of [1+]2 at room temperature in solution due to the stabilizing effect, which arises from strong pp interactions. Moreover, ICT fluorescence is observed with large solvent-dependent Stokes shifts and quantum efficiencies of 0.05 for 1 and 0.035 for 8 in dichloromethane.
Resumo:
Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.
Resumo:
After the development of the viral-based prostate cancer vaccine, Ad5-PSA, much research has been orientated to help enhance the induced immune response by combining the vaccine with physical and chemical modulating agents, more specifically the polymers polyethylenimine (PEI), chitosan, and chitosan coated with CD3 complex antibodies; all previously shown to stimulate an immune response as isolated gene carriers. To compare the vaccine-induced immune responses between the naked vaccine and the polymer-vaccine combinations, a mouse model using the ovalbumin- specific Ad-OVA vaccine was tested using intracellular cytokine staining (ICS), tetramer staining, and cytotoxic T-cell lymphocyte assays to measure the activation of CD8+ T-cells, interferon gamma proteins (INFƒ×), and the induced cytotoxicity to ovalbumin. The Ad-OVA vaccine combined with both chitosan and chitosan with CD3 complex antibodies, both natural polymers, were found to induce similar immune responses to the naked vaccine while the vaccine combined with the synthetic polymer, PEI, diminished the immune response.
Resumo:
Attempted hydrogen–deuterium exchange of trimethyloxonium ion, (CH3)3O+ with excess of 1:1 2HF/SbF5 superacid at −30°C over a period of 30 days showed no exchange. Theoretical calculations at the MP2/6–31G** level are in accord with the lack of hydrogen–deuterium exchange in the methyl group of the (CH3)3O+ cation as protonation (protosolvation) prefers the oxygen lone pair of electrons, instead of a C—H bond. Methylation of aromatics with the (CH3)3O+CF3SO3− in CF3SO3H and 2CF3SO3H:B(O3SCF3)3 was also studied. Whereas in triflic acid no alkylation was observed, in triflatoboric acid, a powerful superacid, alkylation takes place, indicating protolytic activation of the trimethyloxonium ion.
Resumo:
Isomerism is ubiquitous in chemistry, physics, and biology. In atomic and molecular physics, in particular, isomer effects are well known in electron-impact phenomena; however, very little is known for positron collisions. Here we report on a set of experimental and theoretical cross sections for low-energy positron scattering from the three structural isomers of pentane: normal-pentane, isopentane, and neopentane. Total cross sections for positron scattering from normal-pentane and isopentane were measured at the University of Trento at incident energies between 0.1 and 50 eV. Calculations of the total cross sections, integral cross sections for elastic scattering, positronium formation, and electronic excitations plus direct ionization, as well as elastic differential cross sections were computed for all three isomers between 1 and 1000 eV using the independent atom model with screening corrected additivity rule. No definitive evidence of a significant isomer effect in positron scattering from the pentane isomers appears to be present. (C) 2016 AIP Publishing LLC.