947 resultados para Chemical oxygen demand


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The goal of this project is to evaluate the effectiveness of bioswells in protecting water quality from urban runoff. The hypothesis tested in this project is that water in bioswells improves water quality. Water quality in both a bioswell and an underground concrete lined ditch, both containing ground and surface water, were tested for certain water quality parameters. These parameters consisted of: Dissolved Oxygen, pH, water temperature, weather temperature, Total Dissolved Solids, Specific Conductivity, Alkalinity, Total Dissolved Carbon, Chemical Oxygen Demand, and depth and width of the sampling site. An additional contaminant that was looked at was motor oil. This was measured by comparing Total Organic Carbon with Chemical Oxygen Demand. A variety of different methods to measure the water quality parameters were utilized. The concrete site had more stable readings, but much higher water temperatures. However, the bioswell water is mainly from surface water runoff, and the underground concrete lined pipe is from underground water, so the two cannot be directly compared. The bioswell had high readings, especially pertaining to Oxygen Demand, Total Organic Carbon, and Specific Conductivity in early test dates. But, these readings improved as they were filtered though the bioswell. As plant activity increased and the weather began to warm up there were more stable readings. It is concluded that bioswells are an effective way to reduce problems associated with urban runoff pertaining to certain water quality parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contribution of wastewater from a tannery industry to the pollution of a stream was investigated. The main parameters studied were biochemical oxygen demand, chemical oxygen demand, chromium, dissolved oxygen, fecal and total conforms, nitrogen, oils and greases, pH, phosphorous, sulfides, suspended solids, turbidity, and volatile solids. Three sampling points were located: (I) at the discharge point of tannery wastewater, (2) 50 m upstream, and (3) 80 m downstream of discharge point. Also was investigated the pollution at the stream source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo teve como objetivo avaliar alguns impactos decorrentes do deslocamento miscível de efluente de nitração de uma indústria de explosivos aplicado em colunas de um Latossolo Amarelo, horizonte B (LA-B), submetido aos tratamentos: adição de carbonatos (BASE), ácidos (ACID), fosfato (FOSF), carbonatos e fosfato (BASE-FOSF) e ácidos e fosfatos (ACID-FOSF). A recuperação de nitrogênio em relação ao total aplicado varia entre 10,1 (ACID) e 65,5% (BASE). Há correlação significativa entre as curvas de transposição de N obtidas experimentalmente e as simuladas pelo aplicativo STANMOD para a maioria das colunas (p<0,001). A exceção ocorreu para ACID-FOSF (p=0,202). Não há correlação entre carga eletrostática líquida (CEL) e as variáveis de ajuste do modelo: fator de retardamento (FR), coeficiente de dispersão-difusão (D) e taxa de decaimento de primeira ordem m (µ). A adição de fosfato (FOSF) favorece a movimentação do nitrogênio, pois diminui FR (2,35±0,05) e µ (0,498±0,050 h-1) e aumenta D (41,8±5,5 cm2 h-1) em relação ao observado na coluna LA-B (2,51±0,03; 1,697±0,084 h-1e 2,8±1,3 cm2 h-1 respectivamente). A adição de carbonatos e/ou fosfatos (BASE, BASE/FOSF e FOSF) resultou nos maiores valores máximos de demanda química de oxigênio (DQOMÁX). A pequena quantidade de DNA extraída das células bacterianas nos solos sugere que, possivelmente, os processos que governam a adsorção e movimentação de N sejam de natureza não biológica ou que a elevada DQO do líquido percolado prejudica os microrganismos do solo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the manufacture of explosives, large amounts of water are used to remove unwanted by-products generated. This water in turn, ends up in wastewater treatment plants or water bodies. The aim of this study was to evaluate the toxic potential of effluent generated by 2.4.6-Trinitrotoluene (TNT) production, yellow water, red water and mixture of yellow and red water, produced from a plant located in the Paraiba Valley, Sao Paolo state, Brazil. Daphnia similis, Danio rerio, Escherichia coli, Pseudomonas putida and Pseudokircheneriella subcaptata were used as test organisms. Physicochemical parameters such as color, pH, conductivity, total dissolved solids, dissolved oxygen, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were evaluated. Effluent from 2.4.6-TNT production was extremely toxic to all test organisms. The physicochemical parameters evaluated showed high levels of conductivity (from 41.533 to 42.344 mu S /cm) and chemical oxygen demand (COD of 8471 to 27.364 mg/L) for the effluents analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the performance of a combined anaerobic-aerobic packed-bed reactor that can be used to treat domestic sewage. Initially, a bench-scale reactor was operated in three experimental phases. In the first phase, the anaerobic reactor was operated with an average organic matter removal efficiency of 77% for a hydraulic retention time (HRT) of 10 h. In the second phase, the reactor was operated with an anaerobic stage followed by an aerobic zone, resulting in a mean value of 91% efficiency. In the third and final phase, the anaerobic-aerobic reactor was operated with recirculation of the effluent of the reactor through the anaerobic zone. The system yielded mean total nitrogen removal percentages of 65 and 75% for recycle ratios (r) of 0.5 and 1.5, respectively, and the chemical oxygen demand (COD) removal efficiencies were higher than 90%. When the pilot-scale reactor was operated with an HRT of 12 h and r values of 1.5 and 3.0, its performance was similar to that observed in the bench-scale unit (92% COD removal for r = 3.0). However, the nitrogen removal was lower (55% N removal for r = 3.0) due to problems with the hydrodynamics in the aerobic zone. The anaerobic-aerobic fixed-bed reactor with recirculation of the liquid phase allows for concomitant carbon and nitrogen removal without adding an exogenous source of electron donors and without requiring any additional alkalinity supplementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bench-scale Upflow Anaerobic Sludge Blanket (UASB) reactor was used to study the treatment of acid mine drainage through the biological reduction of sulfate. The reactor was fed with acid mine drainage collected at the Osamu Utsumi uranium mine (Caldas, MG, Brazil) and supplemented with ethanol as an external carbon source. Anaerobic granular sludge originating from a reactor treating poultry slaughterhouse wastewater was used as the inoculum. The reactor's performance was studied according to variations in the chemical oxygen demand (COD)/SO42- ratio, influent dilution and liquid-phase recirculation. The digestion of a dilution of the acid mine drainage resulted in a 46.3% removal of the sulfate and an increase in the effluent pH (COD/SO42- = 0.67). An increase in the COD/SO42- ratio to 1.0 resulted in an 85.6% sulfate reduction. The reduction of sulfate through complete oxidation of the ethanol was the predominant path in the reactor, although the removal of COD was not greater than 68% in any of the operational stages. The replenishment of the liquid phase with tap water positively affected the reactor, whereas the recirculation of treated effluent caused disequilibrium and decreased efficiency. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Biofuels produced from sugarcane bagasse (SB) have shown promising results as a suitable alternative of gasoline. Biofuels provide unique, strategic, environmental and socio-economic benefits. However, production of biofuels from SB has negative impact on environment due to the use of harsh chemicals during pretreatment. Consecutive sulfuric acid-sodium hydroxide pretreatment of SB is an effective process which eventually ameliorates the accessibility of cellulase towards cellulose for the sugars production. Alkaline hydrolysate of SB is black liquor containing high amount of dissolved lignin. Results This work evaluates the environmental impact of residues generated during the consecutive acid-base pretreatment of SB. Advanced oxidative process (AOP) was used based on photo-Fenton reaction mechanism (Fenton Reagent/UV). Experiments were performed in batch mode following factorial design L9 (Taguchi orthogonal array design of experiments), considering the three operation variables: temperature (°C), pH, Fenton Reagent (Fe2+/H2O2) + ultraviolet. Reduction of total phenolics (TP) and total organic carbon (TOC) were responsive variables. Among the tested conditions, experiment 7 (temperature, 35°C; pH, 2.5; Fenton reagent, 144 ml H2O2+153 ml Fe2+; UV, 16W) revealed the maximum reduction in TP (98.65%) and TOC (95.73%). Parameters such as chemical oxygen demand (COD), biochemical oxygen demand (BOD), BOD/COD ratio, color intensity and turbidity also showed a significant change in AOP mediated lignin solution than the native alkaline hydrolysate. Conclusion AOP based on Fenton Reagent/UV reaction mechanism showed efficient removal of TP and TOC from sugarcane bagasse alkaline hydrolysate (lignin solution). To the best of our knowledge, this is the first report on statistical optimization of the removal of TP and TOC from sugarcane bagasse alkaline hydrolysate employing Fenton reagent mediated AOP process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydraulic fracturing of the Marcellus Formation creates a byproduct known as frac water. Five frac water samples were collected in Bradford County, PA. Inorganic chemical analysis, field parameters analysis, alkalinity titrations, total dissolved solids(TDS), total suspended solids (TSS), biological oxygen demand (BOD), and chemical oxygen demand (COD) were conducted on each sample to characterize frac water. A database of frac water chemistry results from across the state of Pennsylvania from multiple sources was compiled in order to provide the public and research communitywith an accurate characterization of frac water. Four geochemical models were created to model the reactions between frac water and the Marcellus Formation, Purcell Limestone, and the oil field brines presumed present in the formations. The average concentrations of chloride and TDS in the five frac water samples were 1.1 �± 0.5 x 105 mg/L (5.5X average seawater) and 140,000 mg/L (4X average seawater). BOD values for frac water immediately upon flow back were over 10X greater than the BOD of typical wastewater, but decreased into the range of typical wastewater after a short period of time. The COD of frac water decreases dramatically with an increase in elapsed time from flow back, but remain considerably higher than typicalwastewater. Different alkalinity calculation methods produced a range of alkalinity values for frac water: this result is most likely due to high concentrations of aliphatic acid anions present in the samples. Laboratory analyses indicate that the frac watercomposition is quite variable depending on the companies from which the water was collected, the geology of the local area, and number of fracturing jobs in which the frac water was used, but will require more treatment than typical wastewater regardless of theprecise composition of each sample. The geochemical models created suggest that the presence of organic complexes in an oil field brine and Marcellus Formation aid in the dissolution of ions such as bariumand strontium into the solution. Although equilibration reactions between the Marcellus Formation and the slickwater account for some of the final frac water composition, the predominant control of frac water composition appears to be the ratio of the mixture between the oil field brine and slickwater. The high concentration of barium in the frac water is likely due to the abundance of barite nodules in the Purcell Limestone, and the lack of sulfate in the frac water samples is due to the reducing, anoxic conditions in the earth's subsurface that allow for the degassing of H2S(g).