983 resultados para Changing Manpower Supply
Resumo:
In an age where financial transactions are conducted worldwide and mobility of citizens throughout the world is common, lawyers seeking to serve Bankruptcy Notices and Creditor’s Petitions encounter many problems. To assist lawyers in overcoming some of the service problems that are arising as a result of this changing world, a number of recent cases are considered that highlight a number of issues, including American Express Australia Limited v Michaels [2010] FMCA 103, Deputy Commissioner of Taxation v Barnes (2008) 70 ATR 776; [2008] FMCA 7, Battenberg v Restom & Ors (2005) 223 ALR 692; upheld by the Full Federal Court in Battenberg v Restrom and Ors (2006) 149 FCR 128 at 133; [2006] FCAFC 20 and Envee Energy Pty Ltd (In Liquidation) v Stockford [2007] FMCA 1426. While the fact situation of every bankruptcy case will differ, recent decisions may assist lawyers in dealing effectively with bankruptcy matters in these times of transition. Lawyers can facilitate completion of the litigious process within the relevant legislative framework in order to satisfy their responsibility to clients and to the Court by considering this case law.
Resumo:
Despite the general evolution and broadening of the scope of the concept of infrastructure in many other sectors, the energy sector has maintained the same narrow boundaries for over 80 years. Energy infrastructure is still generally restricted in meaning to the transmission and distribution networks of electricity and, to some extent, gas. This is especially true in the urban development context. This early 20th century system is struggling to meet community expectations that the industry itself created and fostered for many decades. The relentless growth in demand and changing political, economic and environmental challenges require a shift from the traditional ‘predict and provide’ approach to infrastructure which is no longer economically or environmentally viable. Market deregulation and a raft of demand and supply side management strategies have failed to curb society’s addiction to the commodity of electricity. None of these responses has addressed the fundamental problem. This chapter presents an argument for the need for a new paradigm. Going beyond peripheral energy efficiency measures and the substitution of fossil fuels with renewables, it outlines a new approach to the provision of energy services in the context of 21st century urban environments.
Resumo:
The increase of buyer-driven supply chains, outsourcing and other forms of non-traditional employment has resulted in challenges for labour market regulation. One business model which has created substantial regulatory challenges is supply chains. The supply chain model involves retailers purchasing products from brand corporations who then outsource the manufacturing of the work to traders who contract with factories or outworkers who actually manufacture the clothing and textiles. This business model results in time and cost pressures being pushed down the supply chain which has resulted in sweatshops where workers systematically have their labour rights violated. Literally millions of workers work in dangerous workplaces where thousands are killed or permanently disabled every year. This thesis has analysed possible regulatory responses to provide workers a right to safety and health in supply chains which provide products for Australian retailers. This thesis will use a human rights standard to determine whether Australia is discharging its human rights obligations in its approach to combating domestic and foreign labour abuses. It is beyond this thesis to analyse Occupational Health and Safety (OHS) laws in every jurisdiction. Accordingly, this thesis will focus upon Australian domestic laws and laws in one of Australia’s major trading partners, the Peoples’ Republic of China (China). It is hypothesised that Australia is currently breaching its human rights obligations through failing to adequately regulate employees’ safety at work in Australian-based supply chains. To prove this hypothesis, this thesis will adopt a three- phase approach to analysing Australia’s regulatory responses. Phase 1 will identify the standard by which Australia’s regulatory approach to employees’ health and safety in supply chains can be judged. This phase will focus on analysing how workers’ rights to safety as a human right imposes a moral obligation on Australia to take reasonablely practicable steps regulate Australian-based supply chains. This will form a human rights standard against which Australia’s conduct can be judged. Phase 2 focuses upon the current regulatory environment. If existing regulatory vehicles adequately protect the health and safety of employees, then Australia will have discharged its obligations through simply maintaining the status quo. Australia currently regulates OHS through a combination of ‘hard law’ and ‘soft law’ regulatory vehicles. The first part of phase 2 analyses the effectiveness of traditional OHS laws in Australia and in China. The final part of phase 2 then analyses the effectiveness of the major soft law vehicle ‘Corporate Social Responsibility’ (CSR). The fact that employees are working in unsafe working conditions does not mean Australia is breaching its human rights obligations. Australia is only required to take reasonably practicable steps to ensure human rights are realized. Phase 3 identifies four regulatory vehicles to determine whether they would assist Australia in discharging its human rights obligations. Phase 3 then analyses whether Australia could unilaterally introduce supply chain regulation to regulate domestic and extraterritorial supply chains. Phase 3 also analyses three public international law regulatory vehicles. This chapter considers the ability of the United Nations Global Compact, the ILO’s Better Factory Project and a bilateral agreement to improve the detection and enforcement of workers’ right to safety and health.
Resumo:
This paper reveals a journey of theatrical exploration. It is a journey of enquiry and investigation backed by a vigorous, direct and dense professional history of creative work.
Resumo:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.
Resumo:
This paper investigates the elements which support innovative and entrepreneurial activity in New Zealand’s state owned enterprises (SOEs). An inductive case study design, involving interview data, textual analysis, and observation, was applied to three SOEs. Findings reveal that those aspects typically associated with entrepreneurship, such as innovation, risk acceptance, pro-activeness and growth, are often supported by a number of unexpected elements within the public sector. These elements include culture, branding, operational excellence, cost efficiency, and knowledge transfer. The implications are twofold. First, that innovative and entrepreneurial activity in the public sector can go beyond policy-making, with SOEs representing an important policy decision and sector of the New Zealand Government. And second, that the impact of several SOEs on international markets suggests competition on the global stage will increasingly come from both public and private sector organizations.
Resumo:
When the supply voltages are balanced and sinusoidal, load compensation can give both unity power factor (UPF) and perfect harmonic cancellation (PHC) source currents. But under distorted supply voltages, achieving both UPF and PHC currents are not possible and contradictory to each other. Hence there should be an optimal performance between these two important compensation goals. This paper presents an optimal control algorithm for load compensation under unbalanced and distorted supply voltages. In this algorithm source currents are compensated for reactive, imbalance components and harmonic distortions set by the limits. By satisfying the harmonic distortion limits and power balance, this algorithm gives the source currents which will provide the maximum achievable power factor. The detailed simulation results using MATLAB are presented to support the performance of the proposed optimal control algorithm.
Resumo:
Bearing damage in modern inverter-fed AC drive systems is more common than in motors working with 50 or 60 Hz power supply. Fast switching transients and common mode voltage generated by a PWM inverter cause unwanted shaft voltage and resultant bearing currents. Parasitic capacitive coupling creates a path to discharge current in rotors and bearings. In order to analyze bearing current discharges and their effect on bearing damage under different conditions, calculation of the capacitive coupling between the outer and inner races is needed. During motor operation, the distances between the balls and races may change the capacitance values. Due to changing of the thickness and spatial distribution of the lubricating grease, this capacitance does not have a constant value and is known to change with speed and load. Thus, the resultant electric field between the races and balls varies with motor speed. The lubricating grease in the ball bearing cannot withstand high voltages and a short circuit through the lubricated grease can occur. At low speeds, because of gravity, balls and shaft voltage may shift down and the system (ball positions and shaft) will be asymmetric. In this study, two different asymmetric cases (asymmetric ball position, asymmetric shaft position) are analyzed and the results are compared with the symmetric case. The objective of this paper is to calculate the capacitive coupling and electric fields between the outer and inner races and the balls at different motor speeds in symmetrical and asymmetrical shaft and balls positions. The analysis is carried out using finite element simulations to determine the conditions which will increase the probability of high rates of bearing failure due to current discharges through the balls and races.