905 resultados para Cerebral blood flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Perfusion CT (P-CT) is used for acute stroke management, not, however, for evaluating epilepsy. To test the hypothesis that P-CT may identify patients with increased regional cerebral blood flow during subtle status epilepticus (SSE), we compared P-CT in SSE to different postictal conditions. METHODS: Fifteen patients (mean age 47 years, range 21-74) underwent P-CT immediately after evaluation in our emergency room. Asymmetry indices between affected and unaffected hemispheres were calculated for regional cerebral blood volume (rCBV), regional cerebral blood flow (rCBF), and mean transit time (MTT). Regional perfusion changes were compared to EEG findings. RESULTS: Three patients in subtle status epilepticus (group 1) had increased regional perfusion with electro-clinical correlate. Six patients showed postictal slowing on EEG corresponding to an area of regional hypoperfusion (group 2). CT and EEG were normal in six patients with a first epileptic seizure (group 3). Cluster analysis of asymmetry indices separated SSE from the other two groups in all three parameters, while rCBF helped to distinguish between chronic focal epilepsies and single events. CONCLUSION: Preliminary results indicate that P-CT may help to identify patients with SSE during emergency workup. This technique provides important information to neurologists or emergency physicians in the difficult clinical differential diagnosis of altered mental status due to subtle status epilepticus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low cardiac output impairs the hepatic arterial buffer response (HABR). Whether this is due to low abdominal blood flow per se is not known. Dobutamine is commonly used to increase cardiac output, and it may further modify hepatosplanchnic and renal vasoregulation. We assessed the effects of isolated abdominal aortic blood flow changes and dobutamine on hepatosplanchnic and renal blood flow. Twenty-five anesthetized pigs with an abdominal aorto-aortic shunt were randomized to 2 control groups [zero (n = 6) and minimal (n = 6) shunt flow], and 2 groups with 50% reduction of abdominal blood flow and either subsequent increased abdominal blood flow by shunt reduction (n = 6) or dobutamine infusion at 5 and 10 microg kg(-1) min(-1) with constant shunt flow (n = 7). Regional (ultrasound) and local (laser Doppler) intra-abdominal blood flows were measured. The HABR was assessed during acute portal vein occlusion. Sustained low abdominal blood flow, by means of shunt activation, decreased liver, gut, and kidney blood flow similarly and reduced local microcirculatory blood flow in the jejunum. Shunt flow reduction partially restored regional blood flows but not jejunal microcirculatory blood flow. Low-but not high-dose dobutamine increased gut and celiac trunk flow whereas hepatic artery and renal blood flows remained unchanged. Neither intervention altered local blood flows. The HABR was not abolished during sustained low abdominal blood flow despite substantially reduced hepatic arterial blood flow and was not modified by dobutamine. Low-but not high-dose dobutamine redistributes blood flow toward the gut and celiac trunk. The jejunal microcirculatory flow, once impaired, is difficult to restore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supplementary arginine vasopressin infusion in advanced vasodilatory shock may be accompanied by a decrease in cardiac index and systemic oxygen transport capacity in approximately 40% of patients. While a reduction of cardiac output most frequently occurs in patients with hyperdynamic circulation, it is less often observed in patients with low cardiac index. Infusion of inotropes, such as dobutamine, may be an effective strategy to restore systemic blood flow. However, when administering inotropic drugs, systemic blood flow should be increased to adequately meet systemic demands (assessed by central or mixed venous oxygen saturation) without putting an excessive beta-adrenergic stress on the heart. Overcorrection of cardiac index to hyperdynamic values with inotropes places myocardial oxygen supply at significant risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Current practice at high-frequency oscillatory ventilation (HFOV) initiation is a stepwise increase of the constant applied airway pressure to achieve lung recruitment. We hypothesized that HFOV would lead to more adverse cerebral haemodynamics than does pressure controlled ventilation (PCV) in the presence of experimental intracranial hypertension (IH) and acute lung injury (ALI) in pigs with similar mean airway pressure settings. METHODS: In 12 anesthetized pigs (24-27 kg) with IH and ALI, mean airway pressure (P(mean)) was increased (to 20, 25, 30 cm H(2)O every 30 min), either with HFOV or with PCV. The order of the two ventilatory modes (cross-over) was randomized. Mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral blood flow (CBF) (fluorescent microspheres), cerebral metabolism, transpulmonary pressures (P(T)), and blood gases were determined at each P(mean) setting. Our end-points of interest related to the cerebral circulation were ICP, CPP and CBF. RESULTS: CBF and cerebral metabolism were unaffected but there were no differences between the values for HFOV and PCV. ICP increased slightly (HFOV median +1 mm Hg, P<0.05; PCV median +2 mm Hg, P<0.05). At P(mean) setting of 30 cm H(2)O, CPP decreased during HFOV (median -13 mm Hg, P<0.05) and PCV (median -17 mm Hg, P<0.05) paralleled by a decrease of MAP (HFOV median -11 mm Hg, P<0.05; PCV median -13 mm Hg, P<0.05). P(T) increased (HFOV median +8 cm H(2)O, P<0.05; PCV median +8 cm H(2)O, P<0.05). Oxygenation improved and normocapnia maintained by HFOV and PCV. There were no differences between both ventilatory modes. CONCLUSIONS: In animals with elevated ICP and ALI, both ventilatory modes had effects upon cerebral haemodynamics. The effects upon cerebral haemodynamics were dependent of the P(T) level without differences between both ventilatory modes at similar P(mean) settings. HFOV seems to be a possible alternative ventilatory strategy when MAP deterioration can be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resuscitation from hemorrhagic shock relies on fluid retransfusion. However, the optimal properties of the fluid have not been established. The aim of the present study was to test the influence of the concentration of hydroxyethyl starch (HES) solution on plasma viscosity and colloid osmotic pressure (COP), systemic and microcirculatory recovery, and oxygen delivery and consumption after resuscitation, which were assessed in the hamster chamber window preparation by intravital microscopy. Awake hamsters were subjected to 50% hemorrhage and were resuscitated with 25% of the estimated blood volume with 5%, 10%, or 20% HES solution. The increase in concentration led to an increase in COP (from 20 to 70 and 194 mmHg) and viscosity (from 1.7 to 3.8 and 14.4 cP). Cardiac index and microcirculatory and metabolic recovery were improved with HES 10% and 20% when compared with 5% HES. Oxygen delivery and consumption in the dorsal skinfold chamber was more than doubled with HES 10% and 20% when compared with HES 5%. This was attributed to the beneficial effect of restored or increased plasma COP and plasma viscosity as obtained with HES 10% and 20%, leading to improved microcirculatory blood flow values early in the resuscitation period. The increase in COP led to an increase in blood volume as shown by a reduction in hematocrit. Mean arterial pressure was significantly improved in animals receiving 10% and 20% solutions. In conclusion, the present results show that the increase in the concentration of HES, leading to hyperoncotic and hyperviscous solutions, is beneficial for resuscitation from hemorrhagic shock because normalization of COP and viscosity led to a rapid recovery of microcirculatory parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Vasopressin has been shown to increase blood pressure in catecholamine-resistant septic shock. The aim of this study was to measure the effects of low-dose vasopressin on regional (hepato-splanchnic and renal) and microcirculatory (liver, pancreas, and kidney) blood flow in septic shock. METHODS: Thirty-two pigs were anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n = 8 in each). Group S (sepsis) and group SV (sepsis/vasopressin) were exposed to fecal peritonitis. Group C and group V were non-septic controls. After 240 minutes, both septic groups were resuscitated with intravenous fluids. After 300 minutes, groups V and SV received intravenous vasopressin 0.06 IU/kg per hour. Regional blood flow was measured in the hepatic and renal arteries, the portal vein, and the celiac trunk by means of ultrasonic transit time flowmetry. Microcirculatory blood flow was measured in the liver, kidney, and pancreas by means of laser Doppler flowmetry. RESULTS: In septic shock, vasopressin markedly decreased blood flow in the portal vein, by 58% after 1 hour and by 45% after 3 hours (p < 0.01), whereas flow remained virtually unchanged in the hepatic artery and increased in the celiac trunk. Microcirculatory blood flow decreased in the pancreas by 45% (p < 0.01) and in the kidney by 16% (p < 0.01) but remained unchanged in the liver. CONCLUSION: Vasopressin caused marked redistribution of splanchnic regional and microcirculatory blood flow, including a significant decrease in portal, pancreatic, and renal blood flows, whereas hepatic artery flow remained virtually unchanged. This study also showed that increased urine output does not necessarily reflect increased renal blood flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Vasopressin increases arterial pressure in septic shock even when alpha-adrenergic agonists fail. The authors studied the effects of vasopressin on microcirculatory blood flow in the entire gastrointestinal tract in anesthetized pigs during early septic shock. METHODS: Thirty-two pigs were intravenously anesthetized, mechanically ventilated, and randomly assigned to one of four groups (n=8 in each; full factorial design). Group S (sepsis) and group SV (sepsis-vasopressin) were made septic by fecal peritonitis. Group C and group V were nonseptic control groups. After 300 min, group V and group SV received intravenous infusion of 0.06 U.kg.h vasopressin. In all groups, cardiac index and superior mesenteric artery flow were measured. Microcirculatory blood flow was recorded with laser Doppler flowmetry in both mucosa and muscularis of the stomach, jejunum, and colon. RESULTS: While vasopressin significantly increased arterial pressure in group SV (P<0.05), superior mesenteric artery flow decreased by 51+/-16% (P<0.05). Systemic and mesenteric oxygen delivery and consumption decreased and oxygen extraction increased in the SV group. Effects on the microcirculation were very heterogeneous; flow decreased in the stomach mucosa (by 23+/-10%; P<0.05), in the stomach muscularis (by 48+/-16%; P<0.05), and in the jejunal mucosa (by 27+/-9%; P<0.05), whereas no significant changes were seen in the colon. CONCLUSION: Vasopressin decreased regional flow in the superior mesenteric artery and microcirculatory blood flow in the upper gastrointestinal tract. This reduction in flow and a concomitant increase in the jejunal mucosa-to-arterial carbon dioxide gap suggest compromised mucosal blood flow in the upper gastrointestinal tract in septic pigs receiving low-dose vasopressin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective-To evaluate pulsed-wave Doppler spectral parameters as a method for distinguishing between neoplastic and inflammatory peripheral lymphadenopathy in dogs. Sample Population-40 superficial lymph nodes from 33 dogs with peripheral lymphadenopathy. Procedures-3 Doppler spectral tracings were recorded from each node. Spectral Doppler analysis including assessment of the resistive index, peak systolic velocity-to-end diastolic velocity (S:D) ratio, diastolic notch velocity-to-peak systolic velocity (N:S) ratio, and end diastolic velocity-to-diastolic notch velocity ratio was performed for each tracing. Several calculation methods were used to determine the Doppler indices for each lymph node. After the ultrasonographic examination, fine needle aspirates or excisional biopsy specimens of the examined lymph nodes were obtained, and lymphadenopathy was classified as either inflammatory or neoplastic (lymphomatous or metastatic) via cytologic or histologic examination. Results of Doppler analysis were compared with cytologic or histopathologic findings. Results-The Doppler index with the highest diagnostic accuracy was the S:D ratio calculated from the first recorded tracing; a cutoff value of 3.22 yielded sensitivity of 91%, specificity of 100%, and negative predictive value of 89% for detection of neoplasia. Overall diagnostic accuracy was 95%. At a sensitivity of 100%, the most accurate index was the N:S ratio calculated from the first recorded tracing; a cutoff value of 0.45 yielded specificity of 67%, positive predictive value of 81%, and overall diagnostic accuracy of 86.5%. Conclusions and Clinical Relevance-Results suggested that noninvasive Doppler spectral analysis may be useful in the diagnosis of neoplastic versus inflammatory peripheral lymphadenopathy in dogs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To analyze how far an ischemic component might have been involved in optic neuritis. METHODS: Case report: a 32-year-old man with symptoms characteristic for optic neuritis underwent extensive clinical, laboratory/serological and vascular examination for systemic associations and vascular involvement. RESULTS: The patient was found to have a temporary ocular blood flow dysregulation and increased plasma endothelin-1 levels which decreased after the acute phase of the optic nerve. CONCLUSIONS: We conclude that there might be an ischemic component in this patient with optic neuritis and hypothesize that this ischemic component is at least in part due to a temporarily increased endothelin-1 level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Intermittent (IT) and continuous (CT) thermodilution and esophageal Doppler (ED), are all used for hemodynamic monitoring. The aim of this study was to test the agreement between these methods during endotoxin (ET) and dobutamine infusion. METHODS: Twenty-two pigs (39 +/- 1.8 kg body weight) were randomized to general anesthesia and either continuous ET (n = 9) or placebo (PL, n = 13) infusion. After 18 hours of ET or PL infusion, the animals were further randomized to receive dobutamine (n = 3 in ET, n = 5 in PL) or PL. A set of measurements using the three methods were obtained every hour, and the relative blood flow changes between two subsequent measurements were calculated. RESULTS: Bias or limits of agreement for flows were 0.73 L/min or 1.80 L/min for IT and CT, -0.33 L/min or 4.29 L/min for IT and ED, and -1.06 or 3.94 for CT and ED (n = 515, each). For flow changes they were 1% or 44%, 2% or 59%, and 3% or 45%, respectively. Bias and limits of agreement did not differ in ET- and PL-treated animals or in animals with or without dobutamine. Despite significant correlation between any two methods, the respective correlation coefficients (r) were small (IT vs. CT: 0.452; IT vs. ED: 0.042; CT vs. ED: 0.069; all p < 0.001). The same directional changes were measured by any two methods in 49%, 40%, and 50%. When IT flows >5 L/min were compared with IT flows blood flow changes is even worse. ED has poor agreement with both thermodilution methods, especially when cardiac output is >5 L/min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To test whether quantitative stress echocardiography using contrast-based myocardial blood flow (MBF, ml x min(-1) x g(-1)) measurements can detect coronary artery disease in humans. METHODS: 48 patients eligible for pharmacological stress testing by myocardial contrast echocardiography (MCE) and willing to undergo subsequent coronary angiography were prospectively enrolled in the study. Baseline and adenosine-induced (140 microg x kg(-1) x min(-1)) hyperaemic MBF was analysed according to a three-coronary-artery-territory model. Vascular territories were categorised into three groups with increasing stenosis severity defined as percentage diameter reduction by quantitative coronary angiography. RESULTS: Myocardial blood flow reserve (MBFR)-that is, the ratio of hyperaemic to baseline MBF, was obtained in 128 (89%) territories. Mean (SD) baseline MBF was 1.073 (0.395) ml x min(-1) x g(-1) and did not differ between territories supplied by coronary arteries with mild (<50% stenosis), moderate (50%-74% stenosis) or severe (>or=75% stenosis) disease. Mean (SD) hyperaemic MBF and MBFR were 2.509 (1.078) ml x min(-1) x g(-1) and 2.54 (1.03), respectively, and decreased linearly (r2 = 0.21 and r2 = 0.39) with stenosis severity. ROC analysis revealed that a territorial MBFR <1.94 detected >or=50% stenosis with 89% sensitivity and 92% specificity. CONCLUSION: Quantitative stress testing based on MBF measurements derived from contrast echocardiography is a new method for the non-invasive and reliable assessment of coronary artery disease in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key role players of brain swelling seen after severe human head injury have only been partly determined. We used our human head injury data base to determine relationships between potassium, glutamate, lactate and cerebral blood flow (CBF). A total of 70 severely head injured patients (GCS < or = 8) were studied using intracerebral microdialysis to measure extracellular glutamate, potassium and lactate. Xenon CT was used to determine regional cerebral blood flow (rCBF). The mean +/- SEM of the r value of all patients, between potassium and glutamate, and potassium and lactate was 0.25 +/- 0.04 (p < 0.0001) and 0.17 +/- 0.06 (p = 0.006), respectively, demonstrating in both cases a positive relationship. rCBF was negatively correlated with potassium with marginal significance (r = -0.35, p = 0.08). When separated into two groups, patients with contusion had higher potassium levels than patients without contusion (1.55 +/- 0.03 mmol/l versus 1.26 +/- 0.02 mmol/l, respectively). These results in severely head injured patients confirm previous in vitro and animal studies in which relationships between potassium, glutamate, lactate and CBF were found. Potassium efflux is a major determinant of cell swelling leading to clinically significant cytotoxic edema due to increased glutamate release during reduced cerebral blood flow.