963 resultados para Cerebellar model articulation controller (CMAC)
Resumo:
Recurrent neural networks can be used for both the identification and control of nonlinear systems. This paper takes a previously derived set of theoretical results about recurrent neural networks and applies them to the task of providing internal model control for a nonlinear plant. Using the theoretical results, we show how an inverse controller can be produced from a neural network model of the plant, without the need to train an additional network to perform the inverse control.
Resumo:
A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.
Resumo:
Key point summary • Cerebellar ataxias are progressive debilitating diseases with no known treatment and are associated with defective motor function and, in particular, abnormalities to Purkinje cells. • Mutant mice with deficits in Ca2+ channel auxiliary α2δ-2 subunits are used as models of cerebellar ataxia. • Our data in the du2J mouse model shows an association between the ataxic phenotype exhibited by homozygous du2J/du2J mice and increased irregularity of Purkinje cell firing. • We show that both heterozygous +/du2J and homozygous du2J/du2J mice completely lack the strong presynaptic modulation of neuronal firing by cannabinoid CB1 receptors which is exhibited by litter-matched control mice. • These results show that the du2J ataxia model is associated with deficits in CB1 receptor signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity due to reduced α2δ-2 subunit expression. Knowledge of such deficits may help design therapeutic agents to combat ataxias. Abstract Cerebellar ataxias are a group of progressive, debilitating diseases often associated with abnormal Purkinje cell (PC) firing and/or degeneration. Many animal models of cerebellar ataxia display abnormalities in Ca2+ channel function. The ‘ducky’ du2J mouse model of ataxia and absence epilepsy represents a clean knock-out of the auxiliary Ca2+ channel subunit, α2δ-2, and has been associated with deficient Ca2+ channel function in the cerebellar cortex. Here, we investigate effects of du2J mutation on PC layer (PCL) and granule cell (GC) layer (GCL) neuronal spiking activity and, also, inhibitory neurotransmission at interneurone-Purkinje cell(IN-PC) synapses. Increased neuronal firing irregularity was seen in the PCL and, to a less marked extent, in the GCL in du2J/du2J, but not +/du2J, mice; these data suggest that the ataxic phenotype is associated with lack of precision of PC firing, that may also impinge on GC activity and requires expression of two du2J alleles to manifest fully. du2J mutation had no clear effect on spontaneous inhibitory postsynaptic current (sIPSC) frequency at IN-PC synapses, but was associated with increased sIPSC amplitudes. du2J mutation ablated cannabinoid CB1 receptor (CB1R)-mediated modulation of spontaneous neuronal spike firing and CB1Rmediated presynaptic inhibition of synaptic transmission at IN-PC synapses in both +/du2J and du2J/du2J mutants; effects that occurred in the absence of changes in CB1R expression. These results demonstrate that the du2J ataxia model is associated with deficient CB1R signalling in the cerebellar cortex, putatively linked with compromised Ca2+ channel activity and the ataxic phenotype.
Resumo:
The observation-error covariance matrix used in data assimilation contains contributions from instrument errors, representativity errors and errors introduced by the approximated observation operator. Forward model errors arise when the observation operator does not correctly model the observations or when observations can resolve spatial scales that the model cannot. Previous work to estimate the observation-error covariance matrix for particular observing instruments has shown that it contains signifcant correlations. In particular, correlations for humidity data are more significant than those for temperature. However it is not known what proportion of these correlations can be attributed to the representativity errors. In this article we apply an existing method for calculating representativity error, previously applied to an idealised system, to NWP data. We calculate horizontal errors of representativity for temperature and humidity using data from the Met Office high-resolution UK variable resolution model. Our results show that errors of representativity are correlated and more significant for specific humidity than temperature. We also find that representativity error varies with height. This suggests that the assimilation scheme may be improved if these errors are explicitly included in a data assimilation scheme. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Resumo:
Cerebellar ataxias represent a spectrum of disorders which are, however, linked by common symptoms of motor incoordination and are typically associated with deficient in Purkinje cell firing activity and, often, degeneration. Cerebellar ataxias currently lack a curative agent. The endocannabinoid (eCB) system includes eCB compounds and their associated metabolic enzymes, together with cannabinoid receptors, predominantly the cannabinoid CB1 receptor (CB1R) in the cerebellum; activation of this system in the cerebellar cortex is associated with deficits in motor coordination characteristic of ataxia, effects which can be prevented by CB1R antagonists. Of further interest are various findings that CB1R deficits may also induce a progressive ataxic phenotype. Together these studies suggest that motor coordination is reliant on maintaining the correct balance in eCB system signalling. Recent work also demonstrates deficient cannabinoid signalling in the mouse ‘ducky2J’ model of ataxia. In light of these points, the potential mechanisms whereby cannabinoids may modulate the eCB system to ameliorate dysfunction associated with cerebellar ataxias are considered.
Resumo:
The aim of this work is to evaluate the fuzzy system for different types of patients for levodopa infusion in Parkinson Disease based on simulation experiments using the pharmacokinetic-pharmacodynamic model. Fuzzy system is to control patient’s condition by adjusting the value of flow rate, and it must be effective on three types of patients, there are three different types of patients, including sensitive, typical and tolerant patient; the sensitive patients are very sensitive to drug dosage, but the tolerant patients are resistant to drug dose, so it is important for controller to deal with dose increment and decrement to adapt different types of patients, such as sensitive and tolerant patients. Using the fuzzy system, three different types of patients can get useful control for simulating medication treatment, and controller will get good effect for patients, when the initial flow rate of infusion is in the small range of the approximate optimal value for the current patient’ type.
Resumo:
In the field of operational water management, Model Predictive Control (MPC) has gained popularity owing to its versatility and flexibility. The MPC controller, which takes predictions, time delay and uncertainties into account, can be designed for multi-objective management problems and for large-scale systems. Nonetheless, a critical obstacle, which needs to be overcome in MPC, is the large computational burden when a large-scale system is considered or a long prediction horizon is involved. In order to solve this problem, we use an adaptive prediction accuracy (APA) approach that can reduce the computational burden almost by half. The proposed MPC scheme with this scheme is tested on the northern Dutch water system, which comprises Lake IJssel, Lake Marker, the River IJssel and the North Sea Canal. The simulation results show that by using the MPC-APA scheme, the computational time can be reduced to a large extent and a flood protection problem over longer prediction horizons can be well solved.
Resumo:
A Lyapunov-based stabilizing control design method for uncertain nonlinear dynamical systems using fuzzy models is proposed. The controller is constructed using a design model of the dynamical process to be controlled. The design model is obtained from the truth model using a fuzzy modeling approach. The truth model represents a detailed description of the process dynamics. The truth model is used in a simulation experiment to evaluate the performance of the controller design. A method for generating local models that constitute the design model is proposed. Sufficient conditions for stability and stabilizability of fuzzy models using fuzzy state-feedback controllers are given. The results obtained are illustrated with a numerical example involving a four-dimensional nonlinear model of a stick balancer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
A recent trend in networked control systems (NCSs) is the use of wireless networks enabling interoperability between existing wired and wireless systems. One of the major challenges in these wireless NCSs (WNCSs) is to overcome the impact of the message loss that degrades the performance and stability of these systems. Moreover, this impact is greater when dealing with burst or successive message losses. This paper discusses and presents the experimental results of a compensation strategy to deal with this burst message loss problem in which a NCS mathematical model runs in parallel with the physical process, providing sensor virtual data in case of packet losses. Running in real-time inside the controller, the mathematical model is updated online with real control signals sent to the actuator, which provides better reliability for the estimated sensor feedback (virtual data) transmitted to the controller each time a message loss occurs. In order to verify the advantages of applying this model-based compensation strategy for burst message losses in WNCSs, the control performance of a motor control system using CAN and ZigBee networks is analyzed. Experimental results led to the conclusion that the developed compensation strategy provided robustness and could maintain the control performance of the WNCS against different message loss scenarios.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Robust controller design of a wheelchair mobile via LMI approach to SPR systems with feedback output
Resumo:
This article discusses the design of robust controller applied to Wheelchair Furniture via Linear Matrix Inequalities (LMI), to obtain Strictly Positive Real (SPR) systems. The contributions of this work were the choice of a mathematical model for wheelchair: mobile with uncertainty about the position of the center of gravity (CG), the decoupling of the kinematic and dynamical systems, linearization of the models, the headquarters building of parametric uncertainties, the proposal of the control loop and control law with a specified decay rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a modeling technique for small-signal stability assessment of unbalanced power systems is presented. Since power distribution systems are inherently unbalanced, due to its lines and loads characteristics, and the penetration of distributed generation into these systems is increasing nowadays, such a tool is needed in order to ensure a secure and reliable operation of these systems. The main contribution of this paper is the development of a phasor-based model for the study of dynamic phenomena in unbalanced power systems. Using an assumption on the net torque of the generator, it is possible to precisely define an equilibrium point for the phasor model of the system, thus enabling its linearization around this point, and, consequently, its eigenvalue/eigenvector analysis for small-signal stability assessment. The modeling technique presented here was compared to the dynamic behavior observed in ATP simulations and the results show that, for the generator and controller models used, the proposed modeling approach is adequate and yields reliable and precise results.