976 resultados para Cell-surface interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coxsackievirus A9 (CV-A9) belongs to human enteroviruses within family Picornaviridae, which are the main cause of aseptic meningitis. In addition, CV-A9 causes a wide range of other clinical manifestations of acute disease including respiratory infections, myocarditis, encephalitis and severe generalized infections in newborns. In this study, the functions of integrins αVβ6 and αVβ3 in the attachment and cellular entry of CV-A9 were analyzed. Further, virus and cell surface interactions and endocytosis of CV-A9 were studied in specific cell lines. Also, a method for production of GFP-expressing CV-A9 particles by long PCR-mediated mutagenesis and in vivo transcription was developed. The results indicated that RGD-motif (arginine-glycine-asparagine) that resides in the viral capsid is important for CV-A9 infection particularly in cell lines expressing integrin αVβ6 and that this integrin serves as a high affinity attachment receptor for the virus. CV-A9 is also capable of infecting certain cell lines independently of αV-integrins by binding to the cell surface HSPA5 protein. Regardless of the attachment stage, the internalization of the virus occurs via the same entry pathway and is dependent on β2M, dynamin, and Arf6 but independent of clathrin and caveolin-1. Furthermore, the virus internalization occurs within Arf6-containing vesicles suggesting that Arf6 is central mediator of CV-A9 endocytosis. While in this study the results of CV-A9 endocytosis were based on microscopical visualization within individual fixed cells, a rapid method for generation of a virus for real-time imaging was also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrus pulchellus seeds contain at least seven closely related and highly toxic type 2 ribosome-inactivating pulchellins, each consisting of a toxic A-chain linked to a sugar binding B-chain. In the present study, four pulchellin isoforms (termed P I, P II, P III and P IV) were isolated by affinity, ion exchange and chromatofocusing chromatographies, and investigated with respect to toxicity and sugar binding specificity. Half maximal inhibitory concentration and median lethal dose values indicate that P I and P II have similar toxicities and that both are more toxic to cultured HeLa cells and mice than P III and P IV. Interestingly, the secondary structural characteristics and sugar binding properties of the respective pairs of isoforms correlate well with the two toxicity levels, in that P I/P II and P III/P IV form two specific subgroups. From the deduced amino acids sequences of the four isoforms, it is clear that the highest similarity within each subgroup is found to occur within domain 2 of the B-chains, suggesting that the disparity in toxicity levels might be attributed to subtle differences in B-chain-mediated cell surface interactions that precede and determine toxin uptake pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain receptors on natural killer (NK) cells, which are specific for MHC class I (MHC-I) molecules, do not only interact with ligand expressed on opposing cell membranes (in trans) but also interact with those on the same cell membrane (in cis). Cis interactions have been demonstrated for only a small number of cell surface receptors. However, this has not been tested systematically, raising the possibility that additional receptors may be able to bind ligand expressed in cis. Here we describe a number of approaches to evaluate trans and cis binding of the Ly49A NK cell receptor to its H-2D(d) ligand. These procedures should facilitate the investigation of cis/trans interactions of other receptor-ligand pairs and simplify the analysis of NK cell receptor variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus aureus is an opportunistic bacterial pathogen that can infect humans and other species. It utilizes an arsenal of virulence factors to cause disease, including secreted and cell wall anchored factors. Secreted toxins attack host cells, and pore-forming toxins destroy target cells by causing cell lysis. S. aureus uses cell-surface adhesins to attach to host molecules thereby facilitating host colonization. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) are a family of cell-wall anchored proteins that target molecules like fibronectin and fibrinogen. The Serine-aspartate repeat (Sdr) proteins are a subset of staphylococcal MSCRAMMs that share similar domain organization. Interestingly, the amino-terminus, is composed of three immunoglobulin-folded subdomains (N1, N2, and N3) that contain ligand-binding activity. Clumping factors A and B (ClfA and ClfB) and SdrG are Sdr proteins that bind to fibrinogen (Fg), a large, plasma glycoprotein that is activated during the clotting cascade to form fibrin. In addition to recognizing fibrinogen, ClfA and ClfB can bind to other host ligands. Analysis of S. aureus strains that cause osteomyelitis led to the discovery of the bone-sialoprotein-binding protein (Bbp), an Sdr protein. Because several MSCRAMMs target more than one molecule, I hypothesized that Bbp may recognize other host proteins. A ligand screen revealed that the recombinant construct BbpN2N3 specifically recognizes human Fg. Surface plasmon resonance was used to determine the affinity of BbpN2N3 for Fg, and a dissociation constant of 540 nM was determined. Binding experiments performed with recombinant Fg chains were used to map the binding of BbpN2N3 to the Fg Aalpha chain. Additionally, Bbp expressed on the surface of Lactococcus lactis and S. aureus Newman bald mediated attachment of these bacteria to Fg Aalpha. To further characterize the interaction between the two proteins, isothermal titration calorimetry and inhibition assays were conducted with synthetic Fg Aalpha peptides. To determine the physiological implications of Bbp binding to Fg, the effect of Bbp on fibrinogen clotting was studied. Results show that Bbp binding to Fg inhibits the formation of fibrin. The consequences of this interaction are currently under investigation. Together, these data demonstrate that human Fg is a novel ligand for Bbp. This study indicates that the MSCRAMM Bbp may aid in staphylococcal attachment by targeting both an extracellular matrix and a blood plasma protein. The implications of these novel findings are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-molecular interactions exist ubiquitously in all biological systems. This dissertation project was to construct a powerful surface plasmon resonance (SPR) sensor. The SPR system is used to study bio-molecular interactions in real time and without labeling. Surface plasmon is the oscillation of free electrons in metals coupled with surface electromagnetic waves. These surface electromagnetic waves provide a sensitive probe to study bio-molecular interactions on metal surfaces. This project resulted in the successful construction and optimization of a homemade SPR sensor and the development of several new powerful protocols to study bio-molecular interactions. It was discovered through this project that the limitations of earlier SPR sensors are related not only to the instrumentation design and operating procedures, but also to the complex behaviors of bio-molecules on sensor surfaces that were very different from that in solution. Based on these discoveries the instrumentation design and operating procedures were fully optimized. A set of existing sensor surface treatment protocols were tested and evaluated and new protocols were developed in this project. The new protocols have demonstrated excellent performance to study biomolecular interactions. The optimized home-made SPR sensor was used to study protein-surface interactions. These protein-surface interactions are responsible for many complex organic cell activities. The co-existence of different driving forces and their correlation with the structure of the protein and the surface make the understanding of the fundamental mechanism of protein-surface interactions a very challenging task. Using the improved SPR sensor, the electrostatic interaction and hydrophobic interaction were studied separately. The results of this project directly confirmed the theoretical predictions for electrostatic force between the protein and surface. In addition, this project demonstrated that the strength of the protein-surface hydrophobic interaction does not solely depend on the hydrophobicity as reported earlier. Surface structure also plays a significant role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histoplasma capsulatum is an intracellular fungal pathogen that causes respiratory and systemic disease by proliferating within phagocytic cells. The binding of H. capsulatum to phagocytes may be mediated by the pathogen's cell wall carbohydrates, glucans, which consist of glucose homo and hetero-polymers and whose glycosydic linkage types differ between the yeast and mycelial phases. The ±-1,3-glucan is considered relevant for H. capsulatum virulence, whereas the ²-1,3-glucan is antigenic and participates in the modulation of the host immune response. H. capsulatum cell wall components with lectin-like activity seem to interact with the host cell surface, while host membrane lectin-like receptors can recognize a particular fungal carbohydrate ligand. This review emphasizes the relevance of the main H. capsulatum and host carbohydrate-driven interactions that allow for binding and internalization of the fungal cell into phagocytes and its subsequent avoidance of intracellular elimination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) is a retrovirus which can induce mammary carcinomas in mice late in life by activation of proto-oncogenes after integration in their vicinity. Surprisingly, it requires a functional immune system to achieve efficient infection of the mammary gland. This requirement became clear when it was discovered that it has developed strategies to exploit the immune response. Instead of escaping immune detection, it induces a vigorous polyclonal T-B interaction which is required to induce a chronic infection. This is achieved by activating and then infecting antigen presenting cells (B cells), expressing a superantigen on their cell surface and triggering unlimited help by the large number of superantigen-specific T cells. The end result of this strong T-B interaction is the proliferation and differentiation of the infected B cells leading to their long term survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional wisdom is that cell-surface receptors interact with ligands expressed on other cells to mediate cell-to-cell communication (trans interactions). Unexpectedly, it has recently been found that two classes of receptors specific for MHC class I molecules not only interact with MHC class I molecules expressed on opposing cells, but also with those on the same cell. These cis interactions are a feature of immunoreceptors that inhibit, rather than activate, cellular functions. Here, we review situations in which cis interactions have been observed, the characteristics of receptors that bind in trans and cis, and the biological roles of cis recognition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serum-free aggregating rat brain cell cultures provide sufficient cell surface and paracrine interactions between neurons and glial cells for compact myelination. We are interested in the part played in these signalling pathways by protein kinases and have used a PCR cDNA cloning approach to catalogue the protein kinase genes expressed by these cultures. 8 transmembrane protein kinases were identified: IGF1-R, trk B, bFGF-R, c-met, Tyro2, Tyro1, Tyro4 and a novel eck-related gene. The first 4 are receptors for ligands with known trophic functions. Tyro2 is a novel gene related to the EGF-R. The latter 3 belong to the eck gene family of more than 8 highly related putative receptors for, as yet, unknown ligands. 8 cDNAs for intracellular protein kinases were also isolated including 3 novel genes. Ongoing studies are investigating whether these proteins contribute to myelination and/or could be used as therapeutic targets in demyelinating diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T3 complex is known to be expressed on the cell surface of mature T cells together with either the alpha-beta heterodimeric T cell receptor (TCR) or the TCR gamma protein. In a number of immature T cell malignancies, however, T3 has been described exclusively in the cytoplasm. We have investigated five such T cell lines with cytoplasmic T3 and could demonstrate by biosynthetic labeling the presence of the alpha and beta chains of the TCR in the cytoplasm of two of them, CEM and Ichikawa. No surface TCR alpha-beta protein could be detected by staining with the WT31 antibody. These observations, therefore, argue against the concept that expression of the TCR alpha chain controls the surface expression of the T3/TCR complex. Interestingly, phorbol 12-myristate 13-acetate (PMA) induced cell surface expression of T3 protein in these two cell lines only. Moreover, on surface-iodinated CEM cells no association of T3 and TCR molecules could be demonstrated after treatment with PMA, and expression of TCR alpha and beta chains was limited to the cytoplasm. In Ichikawa cells, however, PMA induced surface expression of a mature T3/TCR complex. Our findings indicate that separate regulatory mechanisms may exist for the surface expression of the T3 proteins and for the assembly of the T3/TCR complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carcinoma-associated fibroblasts were reported to promote colorectal cancer (CRC) invasion by secreting motility factors and extracellular matrix processing enzymes. Less is known whether fibroblasts may induce CRC cancer cell motility by contact-dependent mechanisms. To address this question we characterized the interaction between fibroblasts and SW620 and HT29 colorectal cancer cells in 2D and 3D co-culture models in vitro. Here we show that fibroblasts induce contact-dependent cancer cell elongation, motility and invasiveness independently of deposited matrix or secreted factors. These effects depend on fibroblast cell surface-associated fibroblast growth factor (FGF) -2. Inhibition of FGF-2 or FGF receptors (FGFRs) signaling abolishes these effects. FGFRs activate SRC in cancer cells and inhibition or silencing of SRC in cancer cells, but not in fibroblasts, prevents fibroblasts-mediated effects. Using an RGD-based integrin antagonist and function-blocking antibodies we demonstrate that cancer cell adhesion to fibroblasts requires integrin αvβ5. Taken together, these results demonstrate that fibroblasts induce cell-contact-dependent colorectal cancer cell migration and invasion under 2D and 3D conditions in vitro through fibroblast cell surface-associated FGF-2, FGF receptor-mediated SRC activation and αvβ5 integrin-dependent cancer cell adhesion to fibroblasts. The FGF-2-FGFRs-SRC-αvβ5 integrin loop might be explored as candidate therapeutic target to block colorectal cancer invasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metalloproteinases and disintegrins are important components of most viperid and crotalid venoms. Large metalloproteinases referred to as MDC enzymes are composed of an N-terminal Metalloproteinase domain, a Disintegrin-like domain and a Cys-rich C-terminus. In contrast, disintegrins are small non-enzymatic RGD-containing cysteine-rich polypeptides. However, the disintegrin region of MDC enzymes bears a high degree of structural homology to that of the disintegrins, although it lacks the RGD motif. Despite these differences, both components share the property of being able to recognize integrin cell surface receptors and thereby to inhibit integrin-dependent cell reactions. Recently, several membrane-bound MDC enzymes, closely related to soluble venom MDC enzymes, have been described in mammalian cells. This group of membrane-anchored mammalian enzymes is also called the ADAM family of proteins due to the structure revealing A Disintegrin And Metalloproteinase domains. ADAMs are involved in the shedding of molecules from the cell surface, a property which is also shared by some venom MDC enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrins are cell surface adhesion and signaling receptors. Cells use integrins to attach to the extracellular matrix and to other cells, as well as for sensing their environment. In addition to adhesion and migration, integrins have been shown to be important for many biological processes including apoptosis, cell proliferation, and differentiation into specific tissues. Many important next generation biological drugs inhibit integrin functions. Thus, research into interactions between integrins and their ligands under different physiological and pathological conditions is not only of academic interest, but is also important for the field of drug discovery. In this Ph.D. project, the functions of integrin-ligand interactions were studied under different physiologically interesting conditions including 1) human echovirus 1 binding to integrin α2β1, 2) integrin α2β1 binding to collagen under flow conditions, 3) integrin α2β1 binding to a ligand in the presence of the angiogenesis inhibitor histidine rich glycoprotein (HRG) and 4) integrin binding to posttranslationally citrullinated ligands. As a result of the project, we could show that for each condition the integrin-ligand interaction is somewhat unconventional. 1) Echovirus 1 binds only to non-activated conformations of integrin α2β1. 2) Surprisingly, the non-activated conformation is also the primary conformation of integrin α2β1 when it binds to collagen under flow conditions, like when platelets adhere to subendothelial collagen in vascular injuries. In addition, the pre-activation of integrin α2β1 does not increase adhesion under flow. 3) HRG binds to integrin α2β1 through a low-affinity interaction that inhibits integrin binding to collagen. This shows that low affinity interactions could be biologically relevant and possibly regulate angiogenesis. 4) The citrullination of collagen, a posttranslational modification reported to occur in rheumatoid arthritis, specifically inhibits the binding of integrin α10β1 and α11β1, but does not affect the binding of α1β1 ja α2β1. On the other hand, the citrullination of isoDGR in fibronectin and RGD in pro-TGF- β:n inhibit integrin binding completely. Citrullination seems to be an inflammation related process and integrin ligands become citrullinated frequently in vivo. This Ph.D. thesis suggests that unconventional interaction mechanisms between integrins and their ligands, such as posttranslational modifications, low affinity interactions, and non-activated integrin conformations, can have an important role in pathological processes. The study of these kinds of integrin-ligand interactions is important for understanding biological phenomena more deeply. The research might also be beneficial for the development of integrin based therapies for treating diseases.