953 resultados para Cell-growth
Resumo:
Pancreatic cancer is the fourth leading cause of cancer death. Gemcitabine is widely used as a chemotherapeutic agent for the treatment of pancreatic cancer, but the prognosis is still poor. Berberine, an isoquinoline alkaloid extracted from a variety of natural herbs, possesses a variety of pharmacological properties including anticancer effects. In this study, we investigated the anticancer effects of berberine and compared its use with that of gemcitabine in the pancreatic cancer cell lines PANC-1 and MIA-PaCa2. Berberine inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. After berberine treatment, the G1 phase of PANC-1 cells increased by 10% compared to control cells, and the G1 phase of MIA-PaCa2 cells was increased by 2%. Whereas gemcitabine exerts antiproliferation effects through S-phase arrest, our results showed that berberine inhibited proliferation by inducing G1-phase arrest. Berberine-induced apoptosis of PANC-1 and MIA-PaCa2 cells increased by 7 and 2% compared to control cells, respectively. Notably, berberine had a greater apoptotic effect in PANC-1 cells than gemcitabine. Upon treatment of PANC-1 and MIA-PaCa2 with berberine at a half-maximal inhibitory concentration (IC50), apoptosis was induced by a mechanism that involved the production of reactive oxygen species (ROS) rather than caspase 3/7 activation. Our findings showed that berberine had anti-cancer effects and may be an effective drug for pancreatic cancer chemotherapy.
Resumo:
This study aims to explore the effect of microRNA-21 (miR-21) on the proliferation of human degenerated nucleus pulposus (NP) by targeting programmed cell death 4 (PDCD4) tumor suppressor. NP tissues were collected from 20 intervertebral disc degeneration (IDD) patients, and from 5 patients with traumatic spine fracture. MiR-21 expressions were tested. NP cells from IDD patients were collected and divided into blank control group, negative control group (transfected with miR-21 negative sequences), miR-21 inhibitor group (transfected with miR-21 inhibitors), miR-21 mimics group (transfected with miR-21 mimics) and PDCD4 siRNA group (transfected with PDCD4 siRNAs). Cell growth was estimated by Cell Counting Kit-8; PDCD4, MMP-2,MMP-9 mRNA expressions were evaluated by qRT-PCR; PDCD4, c-Jun and p-c-Jun expressions were tested using western blot. In IDD patients, the expressions of miR-21 and PDCD4 mRNA were respectively elevated and decreased (both P<0.05). The miR-21 expressions were positively correlated with Pfirrmann grades, but negatively correlated with PDCD4 mRNA (both P<0.001). In miR-21 inhibitor group, cell growth, MMP-2 and MMP-9 mRNA expressions, and p-c-Jun protein expressions were significantly lower, while PDCD4 mRNA and protein expressions were higher than the other groups (all P<0.05). These expressions in the PDCD4 siRNA and miR-21 mimics groups was inverted compared to that in the miR-21 inhibitor group (all P<0.05). MiR-21 could promote the proliferation of human degenerated NP cells by targeting PDCD4, increasing phosphorylation of c-Jun protein, and activating AP-1-dependent transcription of MMPs, indicating that miR-21 may be a crucial biomarker in the pathogenesis of IDD.
Resumo:
Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events.
Resumo:
Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events.
Resumo:
La moxonidine, un médicament antihypertenseur sympatholytique de type imidazolinique, agit au niveau de la médulla du tronc cérébral pour diminuer la pression artérielle, suite à l’activation sélective du récepteur aux imidazolines I1 (récepteur I1, aussi nommé nischarine). Traitement avec de la moxonidine prévient le développement de l’hypertrophie du ventricule gauche chez des rats hypertendus (SHR), associé à une diminution de la synthèse et une élévation transitoire de la fragmentation d’ADN, des effets antiprolifératifs et apoptotiques. Ces effets se présentent probablement chez les fibroblastes, car l’apoptose des cardiomyocytes pourrait détériorer la fonction cardiaque. Ces effets apparaissent aussi avec des doses non hypotensives de moxonidine, suggérant l’existence d’effets cardiaques directes. Le récepteur I1 se trouvé aussi dans les tissus cardiaques; son activation ex vivo par la moxonidine stimule la libération de l’ANP, ce qui montre que les récepteurs I1 cardiaques sont fonctionnels malgré l’absence de stimulation centrale. Sur la base de ces informations, en plus du i) rôle des peptides natriurétiques comme inhibiteurs de l’apoptose cardiaque et ii) des études qui lient le récepteur I1 avec la maintenance de la matrix extracellulaire, on propose que, à part les effets sympatholytiques centrales, les récepteurs I1 cardiaques peuvent contrôler la croissance-mort cellulaire. L’activation du récepteur I1 peut retarder la progression des cardiopathies vers la défaillance cardiaque, en inhibant des signaux mal adaptatifs de prolifération et apoptose. Des études ont été effectuées pour : 1. Explorer les effets in vivo sur la structure et la fonction cardiaque suite au traitement avec moxonidine chez le SHR et le hamster cardiomyopathique. 2. Définir les voies de signalisation impliquées dans les changements secondaires au traitement avec moxonidine, spécifiquement sur les marqueurs inflammatoires et les voies de signalisation régulant la croissance et la survie cellulaire (MAPK et Akt). 3. Explorer les effets in vitro de la surexpression et l’activation du récepteur I1 sur la survie cellulaire dans des cellules HEK293. 4. Rechercher la localisation, régulation et implication dans la croissance-mort cellulaire du récepteur I1 in vitro (cardiomyocytes et fibroblastes), en réponse aux stimuli associés au remodelage cardiaque : norépinephrine, cytokines (IL-1β, TNF-α) et oxydants (H2O2). Nos études démontrent que la moxonidine, en doses hypotensives et non-hypotensives, améliore la structure et la performance cardiaque chez le SHR par des mécanismes impliquant l’inhibition des cytokines et des voies de signalisation p38 MAPK et Akt. Chez le hamster cardiomyopathique, la moxonidine améliore la fonction cardiaque, module la réponse inflammatoire/anti-inflammatoire et atténue la mort cellulaire et la fibrose cardiaque. Les cellules HEK293 surexprimant la nischarine survivent et prolifèrent plus en réponse à la moxonidine; cet effet est associé à l’inhibition des voies ERK, JNK et p38 MAPK. La surexpression de la nischarine protège aussi de la mort cellulaire induite par le TNF-α, l’IL-1β et le H2O2. En outre, le récepteur I1 s’exprime dans les cardiomyocytes et fibroblastes, son activation inhibe la mort des cardiomyocytes et la prolifération des fibroblastes induite par la norépinephrine, par des effets différentiels sur les MAPK et l’Akt. Dans des conditions inflammatoires, la moxonidine/récepteur aux imidazolines I1 protège les cardiomyocytes et facilite l’élimination des myofibroblastes par des effets contraires sur JNK, p38 MAPK et iNOS. Ces études démontrent le potentiel du récepteur I1/nischarine comme cible anti-hypertrophique et anti-fibrose à niveau cardiaque. L’identification des mécanismes cardioprotecteurs de la nischarine peut amener au développement des traitements basés sur la surexpression de la nischarine chez des patients avec hypertrophie ventriculaire. Finalement, même si l’effet antihypertenseur des agonistes du récepteur I1 centraux est salutaire, le développement de nouveaux agonistes cardiosélectifs du récepteur I1 pourrait donner des bénéfices additionnels chez des patients non hypertendus.
Resumo:
Background Airborne transmitted pathogens, such as porcine reproductive and respiratory syndrome virus (PRRSV), need to interact with host cells of the respiratory tract in order to be able to enter and disseminate in the host organism. Pulmonary alveolar macrophages (PAM) and MA104 derived monkey kidney MARC-145 cells are known to be permissive to PRRSV infection and replication and are the most studied cells in the literature. More recently, new cell lines developed to study PRRSV have been genetically modified to make them permissive to the virus. The SJPL cell line origin was initially reported to be epithelial cells of the respiratory tract of swine. Thus, the goal of this study was to determine if SJPL cells could support PRRSV infection and replication in vitro. Results The SJPL cell growth was significantly slower than MARC-145 cell growth. The SJPL cells were found to express the CD151 protein but not the CD163 and neither the sialoadhesin PRRSV receptors. During the course of the present study, the SJPL cells have been reported to be of monkey origin. Nevertheless, SJPL cells were found to be permissive to PRRSV infection and replication even if the development of the cytopathic effect was delayed compared to PRRSV-infected MARC-145 cells. Following PRRSV replication, the amount of infectious viral particles produced in SJPL and MARC-145 infected cells was similar. The SJPL cells allowed the replication of several PRRSV North American strains and were almost efficient as MARC-145 cells for virus isolation. Interestingly, PRRSV is 8 to 16 times more sensitive to IFNα antiviral effect in SJPL cell in comparison to that in MARC-145 cells. PRRSV induced an increase in IFNβ mRNA and no up regulation of IFNα mRNA in both infected cell types. In addition, PRRSV induced an up regulation of IFNγ and TNF-α mRNAs only in infected MARC-145 cells. Conclusions In conclusion, the SJPL cells are permissive to PRRSV. In addition, they are phenotypically different from MARC-145 cells and are an additional tool that could be used to study PRRSV pathogenesis mechanisms in vitro.
Resumo:
Mammalian reoviruses exhibit a large host range and infected cells are generally killed; however, most studies examined only a few cell types and host species, and are probably not representative of all possible interactions between virus and host cell. Many questions thus remain concerning the nature of cellular factors that affect viral replication and cell death. In the present work, it was observed that replication of the classical mammalian reovirus serotype 3 Dearing in a bat epithelial cell line, Tb1.Lu, does not result in cell lysis and is rapidly reduced to very low levels. Prior uncoating of virions by chymotrypsin treatment, to generate infectious subviral particles, increased the initial level of infection but without any significant effect on further viral replication or cell survival. Infected cells remain resistant to virus reinfection and secrete an antiviral factor, most likely interferon, that is protective against the unrelated encephalomyocarditis virus. Although, the transformed status of a cell is believed to promote reovirus replication and viral “oncolysis”, resistant Tb1.Lu cells exhibit a classical phenotype of transformed cells by forming colonies in semisolid soft agar medium. Further transduction of Tb.Lu cells with a constitutively-active Ras oncogene does not seem cell growth or reovirus effect on these cells. Infected Tb1.Lu cells can produce low-level of infectious virus for a long time without any apparent effect, although these cells are resistant to reinfection. The results suggest that Tb1.Lu cells can mount an unusual antiviral response. Specific properties of bat cells may thus be in part responsible for the ability of the animals to act as reservoirs for viruses in general and for novel reoviruses in particular. Their peculiar resistance to cell lysis also makes Tb1.Lu cells an attractive model to study the cellular and viral factors that determine the ability of reovirus to replicate and destroy infected cells.
Resumo:
Afin d’effectuer des études fonctionnelles sur le génome de la souris, notre laboratoire a généré une bibliothèque de clones de cellules souches embryonnaires (ESC) présentant des suppressions chromosomiques chevauchantes aléatoires – la bibliothèque DELES. Cette bibliothèque contient des délétions couvrant environ 25% du génome murin. Dans le laboratoire, nous comptons identifier de nouveaux déterminants du destin des cellules hématopoïétiques en utilisant cet outil. Un crible primaire utilisant la benzidine pour démontrer la présence d'hémoglobine dans des corps embryoïdes (EBS) a permis d’identifier plusieurs clones délétés présentant un phénotype hématopoïétique anormal. Comme cet essai ne vérifie que la présence d'hémoglobine, le but de mon projet est d'établir un essai in vitro de différenciation des ESC permettant de mesurer le potentiel hématopoïétique de clones DELES. Mon hypothèse est que l’essai de différenciation hématopoïétique publié par le Dr Keller peut être importé dans notre laboratoire et utilisé pour étudier l'engagement hématopoïétique des clones DELES. À l’aide d’essais de RT-QPCR et de FACS, j’ai pu contrôler la cinétique de différenciation hématopoïétique en suivant l’expression des gènes hématopoïétiques et des marqueurs de surface comme CD41, c-kit, RUNX1, GATA2, CD45, β-globine 1 et TER-119. Cet essai sera utilisé pour valider le potentiel hématopoïétique des clones DELES candidats identifiés dans le crible principal. Mon projet secondaire vise à utiliser la même stratégie rétro-virale a base de Cre-loxP utilisée pour générer la bibliothèque DELES pour générer une bibliothèque de cellules KBM-7 contenant des suppressions chromosomiques chevauchantes. Mon but ici est de tester si la lignée cellulaire leuémique humaine presque haploïde KBM-7 peut être exploitée en utilisant l'approche DELES pour créer cette bibliothèque. La bibliothèque de clones KBM-7 servira à définir les activités moléculaires de drogues anti-leucémiques potentielless que nous avons identifiées dans le laboratoire parce qu’elles inhibent la croissance cellulaire dans plusieurs échantillons de leucémie myéloïde aiguë dérivés de patients. Elle me permettra également d'identifier les voies de signalisation moléculaires qui, lorsque génétiquement perturbées, peuvent conférer une résistance à ces drogues.
Resumo:
The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.
Resumo:
The 70kDa ribosomal protein S6 kinase 1 (S6K1) plays important roles in the regulation of protein synthesis, cell growth and metabolism. S6K1 is activated by the phosphorylation of multiple serine and threonine residues in response to stimulation by a variety of growth factors and cytokines. In addition to phosphorylation, we have recently shown that S6K1 is also targeted by lysine acetylation. Here, using tandem mass spectrometry we have mapped acetylation of S6K1 to lysine 516, a site close to the C-terminus of the kinase that is highly conserved amongst vertebrate S6K1 orthologues. Using acetyl-specific K516 antibodies, we show that acetylation of endogenous S6K1 at this site is potently induced upon growth factor stimulation. Although S6K1 acetylation and phosphorylation are both induced by growth factor stimulation, these events appear to be functionally independent. Indeed, experiments using inhibitors of S6K1 activation and exposure of cells to various stresses indicate that S6K1 acetylation can occur in the absence of phosphorylation and vice versa. We propose that K516 acetylation may serve to modulate important kinase-independent functions of S6K1 in response to growth factor signalling.
Resumo:
In eukaryotic cells, cell growth and division occur in a stepwise, orderly fashion described by a process known as the cell cycle. The relationship between positive-strand RNA viruses and the cell cycle and the concomitant effects on virus replication are not clearly understood. We have shown that infection of asynchronously replicating and synchronized replicating cells with the avian coronavirus infectious bronchitis virus (IBV), a positive-strand RNA virus, resulted in the accumulation of infected cells in the G(2)/M phase of the cell cycle. Analysis of various cell cycle-regulatory proteins and cellular morphology indicated that there was a down-regulation of cyclins D1 and D2 (G(2) regulatory cyclins) and that a proportion of virus-infected cells underwent aberrant cytokinesis, in which the cells underwent nuclear, but not cytoplasmic, division. We assessed the impact of the perturbations on the cell cycle for virus-infected cells and found that IBV-infected G(2)/M-phase-synchronized cells exhibited increased viral protein production when released from the block when compared to cells synchronized in the Go phase or asynchronously replicating cells. Our data suggested that IBV induces a G(2)/M phase arrest in infected cells to promote favorable conditions for viral replication.
Resumo:
To investigate the effects of the medium and cryoprotective agents used on the growth and survival of Lactobacillus plantarum and Lactobacillus rhamnosus GG during freeze drying. A complex medium was developed consisting primarily of glucose, yeast extract and vegetable-derived peptone. Trehalose, sucrose and sorbitol were examined for their ability to protect the cells during freeze drying. Using standardized amount of cells and the optimized freeze drying media, the effect of the growth medium on cell survival during freeze drying was investigated. The results showed that glucose and yeast extract were the most important growth factors, while sucrose offered better protection than trehalose and sorbitol during freeze drying. When the cells were grown under carbon limiting conditions, their survival during freeze drying was significantly decreased. A clear relationship was observed between cell growth and the ability of the cells to survive during the freeze drying process. The survival of probiotic strains during freeze drying was shown to be dependent on the cryoprotectant used and the growth medium.
Resumo:
A mammalian cell line, J774, was susceptible to both synthetic and natural photosensitising agents after irradiation with long-wave ultraviolet light. Both UV-A light and psoralen did not affect cell growth individually; a reduction in visual confluency was achieved only when psoralen and UV-A light were used in combination. The maximum visual confluency decreased by 55% when 50 ppm psoralen was added to a growing culture and irradiated with UV light for 3 min. Decreasing the UV-A exposure times from 3 min to 3 s did not greatly affect the maximum total visual confluence reached using different synthetic psoralen concentrations, but did affect the rate at which cell death occurred. The 3 min exposure time resulted in a rapid decrease in cell numbers in comparison to 3 s exposure time. Synthetic psoralen was found to have an increasing photosensitising activity with increasing concentration using a logarithmic shift between 0.5 ppm and 50 ppm. A visual confluency of 45% was achieved using concentrations of 50 ppm psoralen, and 70% visual confluency using 0.5 ppm. Natural mixtures of furanocoumarins containing psoralens, obtained from two separate parsley sources, were found to have greater efficacy at inhibiting the growth cycle of the cells when compared to the synthetic psoralen.
Resumo:
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.
Resumo:
Protein kinase C (PKC) plays a pivotal role in modulating the growth of melanocytic cells in culture. We have shown previously that a major physiological substrate of PKC, the 80 kDa myristoylated alanine-rich C-kinase substrate (MARCKS), can be phosphorylated in quiescent, non-tumorigenic melanocytes exposed transiently to a biologically active phorbol ester, but cannot be phosphorylated in phorbol ester-treated, syngeneic malignant melanoma cells. Despite its ubiquitous distribution, the function of MARCKS in cell growth and transformation remains to be demonstrated clearly. We report here that MARCKS mRNA and protein levels are down-regulated significantly in the spontaneously derived murine B16 melanoma cell line compared with syngeneic normal Mel-ab melanocytes. In contrast, the tumourigenic v-Ha-ras-transfonned melan-ocytic line, LTR Ras 2, showed a high basal level of MARCKS phosphorylation which was not enhanced by treatment of cells with phorbol ester. Furthermore, protein levels of MARCKS in LTR Ras 2 cells were similar to those expressed in Mel-ab melanocytes. However, in four out of six murine tumour cell lines investigated, levels of MARCKS protein were barely detectable. Transfection of B16 cells with a plasmid containing the MARCKS cDNA in the sense orientation produced two neomycin-resistant clones displaying reduced proliferative capacity and decreased anchorage-independent growth compared with control cells. In contrast, transfection with the antisense MARCKS construct produced many colonies which displayed enhanced growth and transforming potential compared with control cells. Thus, MARCKS appears to act as a novel growth suppressor in the spontaneous transformation of cells of melanocyte origin and may play a more general role in the tumour progression of other carcinomas.