898 resultados para Cell culture techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet laser instrumentation of root surfaces on the morphology of fibroblasts from continuous lineage. Method and materials: Dentinal slices with 4 mm2 of surface area were obtained from teeth extracted for severe periodontal involvement. Specimens were assigned to one of three treatment groups: group 1, application of the laser with an energy level of 250 mJ at 103 pulses per second; group 2, application of the laser with an energy level of 80 mJ at 166 pulses per second; and group 3, similar to group 2, but with concomitant water irrigation of the device. The specimens were incubated in multiwell plates containing cell culture media. After 24 hours, the specimens were submitted to routine preparation for scanning electron microscopy. Three independent and blind examiners used photomicrographs to evaluate the morphology of the fibroblasts: 0 = without cells; 1 = flat cells; 2 = round cells; and 3 = combination of round and flat cells. Results: Statistical analysis indicated that there were significant differences among treatment groups and that group 3 was significantly different from groups 1 and 2. Conclusion: There was no difference between groups 1 and 2 in the morphology of fibroblasts. Laser instrumentation with concomitant irrigation impaired the adhesion of fibroblasts to dentinal surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the number and morphology of fibroblasts grown on machined titanium healing abutments treated with an airpowder system. MATERIALS AND METHODS: Twenty-six abutments were assigned to two experimental groups: control (no treatment) and treated (exposed to the Prophy-Jet for 30 seconds). The specimens were incubated for 24 hours with fibroblastic cells in multiwell plates, followed by routine laboratory processing for scanning electron microscope analysis. The specimens were photographed at x 350, and the cell number was counted on an area of approximately 200 um2. RESULTS: No significant differences were found on morphology between the groups (P > 0.05); however, the control group presented a significantly greater amount of cells (71.44 +/- 31.93, mean +/- SD) in comparison with treated group (35.31 +/- 28.14), as indicated by a nonpaired t test (P = 0.001). CONCLUSION: The use of an air-abrasive prophylaxis system on the surface of titanium healing abutments reduced the cells proliferation but did not influence cell morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme, remaining 100% active when incubated at 75°C for 1 h. © 2007 Humana Press Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To examine the effects of triiodothyronine (T3), 17β-estradiol (E2), and tamoxifen (TAM) on transforming growth factor (TGF)-α gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T3; dish 3: T3+TAM; dish 4: TAM; dish 5: E2; dish 6: E2+TAM. TGF-α mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T3 for 48 h significantly increased TGF-α mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-α mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-α mRNA expression is more efficiently upregulated by T3 than E2. Concomitant treatment with TAM had a mitigating effect on the T3 effect, while E2 induced TGF-α upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-α, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER α and β; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E2. ©2008, Editrice Kurtis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the cytotoxic effects of 2 mineral trioxide aggregate (MTA) cements - White-MTA-Angelus and a new formulation, MTA-Bio - on odontoblast-like cell (MDPC-23) cultures. Twenty-four disc-shaped (2 mm diameter x 2 mm thick) specimens were fabricated from each material and immersed individually in wells containing 1 mL of DMEM culture medium for either 24 h or 7 days to obtain extracts, giving rise to 4 groups of 12 specimens each: G1 - White-MTA/24 h; G2 - White-MTA/7 days; G3 - MTA-Bio/24 h; and G4 - MTA-Bio/7 days. Plain culture medium (DMEM) was used as a negative control (G5). Cells at 30,000 cells/cm 2 concentration were seeded in the wells of 24-well plates and incubated in a humidified incubator with 5% CO 2 and 95% air at 37°C for 72 h. After this period, the culture medium of each well was replaced by 1 mL of extract (or plain DMEM in the control group) and the cells were incubated for additional 2 h. Cell metabolism was evaluated by the MTT assay and the data were analyzed statistically by ANOVA and Tukey's test (α=0.05). Cell morphology and the surface of representative MTA specimens of each group were examined by scanning electron microscopy. There was no statistically significant difference (p>0.05) between G1 and G2 or between G3 and G4. No significant difference (p>0.05) was found between the experimental and control groups either. Similar cell organization and morphology were observed in all groups, regardless of the storage periods. However, the number of cells observed in the experimental groups decreased compared to the control group. MTA-Bio presented irregular surface with more porosities than White-MTA. In conclusion, White-MTA and MTA-Bio presented low cytotoxic effects on odontoblast-like cell (MDPC-23) cultures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-grade prostate cancers express high levels of matrix metalloproteinases (MMPs), major enzymes involved in tumor invasion and metastasis. However, the tumor cell lines commonly employed for prostate cancer research express only small amounts of MMPs when cultivated as monolayer cultures, in common culture media. The present study was conducted to ascertain whether culture conditions that include fibronectin can alter MMP2 and MMP9 expression by the human prostatic epithelial cell lines RWPE-1, LNCaP and PC-3. These cells were individually seeded at 2×104cells/cm2, cultivated until they reached 80% confluence, and then exposed for 4h to fibronectin, after which the conditioned medium was analyzed by gelatin zymography. Untreated cells were given common medium. Only RWPE-1 cells express detectable amounts of MMP9 when cultivated in common medium, whereas the addition of fibronectin induced high expression levels of pro and active forms of MMP2 in all tested cell lines. Our findings demonstrate that normal and tumor prostate cell lines express MMP2 activity when in contact with extracellular matrix components or blood plasma proteins such as fibronectin. Future studies of transcriptomes and proteomes in prostate cancer research using these cell lines should not neglect these important conclusions. © 2012 Elsevier Inc..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: O uso de enxertos autólogos é limitado pela extensão da área doadora e pelo estado clínico dos pacientes, no caso de lesões extensas. Alotransplantes coletados de cadáveres ou voluntários são rejeitados após uma ou duas semanas, servindo apenas como cobertura temporária para essas lesões. O tratamento de grandes lesões cutâneas com tegumento autólogo reconstruído constitui alternativa atraente, já que, a partir de um pequeno fragmento de pele do paciente, pode-se obter culturas de células que se multiplicam rapidamente e podem ser criopreservadas, permitindo, assim, sua utilização em novos tratamentos por tempo indeterminado. Este estudo pretendeu avaliar o comportamento histológico de queratinócitos e fibroblastos humanos cultivados sobre uma matriz de colágeno porcino derivada da submucosa intestinal. MÉTODO: Células da epiderme e derme humana foram cultivadas separadamente e semeadas sobre matriz de colágeno porcino, onde permaneceram em ambiente controlado por 21 dias, antes de serem submetidas a análise histológica. RESULTADOS: Observou-se que os fibroblastos invadem e colonizam a matriz de colágeno, enquanto os queratinócitos se organizam de forma laminar e estratificada sobre a superfície em que foram semeados. CONCLUSÕES: A utilização da matriz de colágeno porcino como carreador de células da pele humana é possível e a organização dessas células se assemelha à arquitetura da pele humana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Mittelpunkt dieser Arbeit stand das große L-Hüllprotein (L) des Hepatitis B - Virus. L bildet eine ungewöhnliche duale Topologie in der ER-Membran aus, welche auch im reifen Viruspartikel erhalten bleibt. In einem partiellen, posttranslationalen Reifungsprozess wird die sogenannte PräS-Region von der zytosolischen Seite der Membran aus in das ER-Lumen transloziert. Aufgrund seiner dualen Topologie und der damit verbundenen Multifunktionalität übernimmt L eine Schlüsselfunktion im viralen Lebenszyklus. Ein Schwerpunkt dieser Arbeit lag deshalb darin, neue zelluläre Interaktionspartner des L-Hüllproteins zu identifizieren. Ihre Analyse sollte helfen, das Zusammenspiel des Virus mit der Wirtszelle besser zu verstehen. Hierfür wurde das Split - Ubiquitin Hefe - Zwei - Hybrid System eingesetzt, das die Interaktionsanalyse von Membranproteinen und Membran-assoziierten Proteinen ermöglicht. Zwei der neu identifizierten Interaktionspartner, der v-SNARE Bet1 und Sec24A, die Cargo-bindende Untereinheit des CoPII-vermittelten vesikulären Transports, wurden weitergehend im humanen Zellkultursystem untersucht. Sowohl für Bet1 als auch für Sec24A konnte die Interaktion mit dem L-Hüllprotein bestätigt und der Bindungsbereich eingegrenzt werden. Die Depletion des endogenen Bet1 reduzierte die Freisetzung L-haltiger, nicht aber S-haltiger subviraler Partikel (SVP) deutlich. Im Gegensatz zu Bet1 interagierte Sec24A auch mit dem mittleren M- und kleinen S-Hüllprotein von HBV. Die Inhibition des CoPII-vermittelten vesikulären Transportweges durch kombinierte Depletion der vier Sec24 Isoformen blockierte die Freisetzung sowohl L- als auch S-haltiger SVP. Dies bedeutet, dass die HBV - Hüllproteine das ER CoPII-vermittelt verlassen, wobei sie aktiv Kontakt zur Cargo-bindenden Untereinheit Sec24A aufnehmen. Der effiziente Export der Hüllproteine aus dem ER ist für die Virusmorphogenese und somit für den HBV - Lebenszyklus essentiell. rnEin weiterer Schwerpunkt dieser Arbeit basierte auf der Interaktion des L-Hüllproteins mit dem ER-luminalen Chaperon BiP. In der vorliegenden Arbeit wurde überprüft, ob BiP, ähnlich wie das zytosolische Chaperon Hsc70, an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt ist. Hierfür wurde BiP durch die ektopische Expression seiner Ko-Chaperone BAP und ERdj4 in seiner Substrat-bindenen Kapazität manipuliert. ERdj4, ein Mitglied der Hsp40 - Proteinfamilie, stimuliert die ATPase-Aktivität von BiP, was die Substratbindung stabilisiert. Der Nukleotid - Austauschfaktor BAP hingegen vermittelt die Auflösung des BiP - Substrat - Komplexes. Die Auswirkung der veränderten in vivo-Aktivität von BiP auf die posttranslationale PräS-Translokation wurde mit Proteaseschutz - Versuchen untersucht. Die ektopische Expression des positiven als auch des negativen Regulators von BiP resultierte in einer drastischen Reduktion der posttranslationalen PräS-Translokation. Ein vergleichbarer Effekt wurde nach Manipulation des BiP ATPase - Zyklus durch Depletion der zellulären ATP - Konzentration beobachtet. Dies spricht dafür, dass das ER-luminale Chaperon BiP, zusammen mit Hsc70, eine zentrale Rolle in der Ausbildung der dualen Topologie des L-Hüllproteins spielt. rnZwei weitere Proteine, Sec62 und Sec63, die sich für die posttranslationale Translokation in der Hefe als essentiell erwiesen haben, wurden in die Analyse der dualen Topologie des L-Hüllproteins einbezogen. Interessanterweise konnte eine rein luminale Ausrichtung der PräS-Region nach kombinierter Depletion des endogenen Sec62 und Sec63 beobachtet werden. Dies deutet an, dass sowohl Sec62 als auch Sec63 an der Ausbildung der dualen Topologie des L-Hüllproteins beteiligt sind. In Analogie zur Posttranslokation der Hefe könnte Sec62 als Translokon-assoziierter Rezeptor für Substrate der Posttranslokation, und damit der PräS-Region, dienen. Sec63 könnte mit seiner J-Domäne BiP zum Translokon rekrutieren und daraufhin dessen Substrat-bindende Aktivität stimulieren. BiP würde dann, einer molekularen Ratsche gleich, die PräS-Region durch wiederholtes Binden und Freisetzen aktiv in das ER-Lumen hereinziehen, bis eine stabile duale Topologie des L-Hüllproteins ausgebildet ist. Die Bedeutung von Sec62 und Sec63 für den HBV - Lebenszyklus wird dadurch untermauert, dass sowohl die ektopische Expression als auch die Depletion des endogenen Sec63 die Freisetzung L-haltiger SVP deutlich reduziert. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alveolar epithelial type II (ATII) cells are small, cuboidal cells that constitute approximately 60% of the pulmonary alveolar epithelium. These cells are crucial for repair of the injured alveolus by differentiating into alveolar epithelial type I cells. ATII cells derived from human ES (hES) cells are a promising source of cells that could be used therapeutically to treat distal lung diseases. We have developed a reliable transfection and culture procedure, which facilitates, via genetic selection, the differentiation of hES cells into an essentially pure (>99%) population of ATII cells (hES-ATII). Purity, as well as biological features and morphological characteristics of normal ATII cells, was demonstrated for the hES-ATII cells, including lamellar body formation, expression of surfactant proteins A, B, and C, alpha-1-antitrypsin, and the cystic fibrosis transmembrane conductance receptor, as well as the synthesis and secretion of complement proteins C3 and C5. Collectively, these data document the successful generation of a pure population of ATII cells derived from hES cells, providing a practical source of ATII cells to explore in disease models their potential in the regeneration and repair of the injured alveolus and in the therapeutic treatment of genetic diseases affecting the lung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concerns cell adhesion to polymer surfaces with an experimental emphasis on hydrogels. The thesis begins with a review of the literature and a synthesis of recent evidence to describe the process of cell adhesion in a given situation. The importance of understanding integrin-adhesion protein interactions and adhesion protein-surface interactions is emphasised. The experimental chapters describe three areas of investigation. Firstly, in vitro cell culture techniques are used to explore a variety of surfaces including polyethylene glycol methacrylate (PEGMA) substituted hydrogels, sequence distribution modified hydrogels and worn contact lenses. Cell adhesion to PEGMA substituted gels is found to decrease with increases in polyethylene oxide chain length and correlations are made between sequence distribution and adhesion. Worn contact lenses are investigated for their cell adhesion properties in the presence of antibodies to specific adhesion proteins, demonstrating the presence of vitronectin and fibronectin on the lenses. The second experimental chapter addresses divalent cation regulation of integrin mediated cell adhesion. Several cell types and various cations are used. Zinc, previously not regarded as an important cation in the process, is found to inhibit 3T3 cell adhesion to vitronectin that is promoted by other divalent cations. The final experimental chapter concerns cell adhesion and growth on macroporous hydrogels. A variety of freeze-thaw formed porous gels are investiated and found generally to promote cell growth rate.Interpenetrating networkbased gels (IPN) are made porous by elution of dextrin particles of varying size and loading density. These materials provide the basis for synthetic cartilage. Cartilage cells (chondrocytes) plated onto the surface of the porous IPN materials maintain a rounded shape and hence phenotypic function when a critical pore size and density is achieved. In this way, a prospective implant, made porous at the perpendicular edges contacting natural cartilage can be both mechanically stabilised and encourage the maintenance of normal matrix production at the tissue interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the complex mechanisms underlying bone remodeling is crucial to the development of novel therapeutics. Glycosaminoglycans (GAGs) localised to the extracellular matrix (ECM) of bone are thought to play a key role in mediating aspects of bone development. The influence of isolated GAGs was studied by utilising in vitro murine calvarial monolayer and organ culture model systems. Addition of GAG preparations extracted from the cell surface of human osteoblasts at high concentrations (5 microg/ml) resulted in decreased proliferation of cells and decreased suture width and number of bone lining cells in calvarial sections. When we investigated potential interactions between the growth factors fibroblast growth factor-2 (FGF2), bone morphogenic protein-2 (BMP2) and transforming growth factor-beta1 (TGFbeta1) and the isolated cell surface GAGs, differences between the two model systems emerged. The cell culture system demonstrated a potentiating role for the isolated GAGs in the inhibition of FGF2 and TGFbeta1 actions. In contrast, the organ culture system demonstrated an enhanced stimulation of TFGbeta1 effects. These results emphasise the role of the ECM in mediating the interactions between GAGs and growth factors during bone development and suggest the GAG preparations contain potent inhibitory or stimulatory components able to mediate growth factor activity.