974 resultados para Carbon Black


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tradeoffs are examined between mitigating black carbon (BC) and carbon dioxide (CO2) for limiting peak global mean warming, using the following set of methods. A two-box climate model is used to simulate temperatures of the atmosphere and ocean for different rates of mitigation. Mitigation rates for BC and CO2 are characterized by respective timescales for e-folding reduction in emissions intensity of gross global product. There are respective emissions models that force the box model. Lastly there is a simple economics model, with cost of mitigation varying inversely with emission intensity. Constant mitigation timescale corresponds to mitigation at a constant annual rate, for example an e-folding timescale of 40 years corresponds to 2.5% reduction each year. Discounted present cost depends only on respective mitigation timescale and respective mitigation cost at present levels of emission intensity. Least-cost mitigation is posed as choosing respective e-folding timescales, to minimize total mitigation cost under a temperature constraint (e.g. within 2 degrees C above preindustrial). Peak warming is more sensitive to mitigation timescale for CO2 than for BC. Therefore rapid mitigation of CO2 emission intensity is essential to limiting peak warming, but simultaneous mitigation of BC can reduce total mitigation expenditure. (c) 2015 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long-term (2009-2012) data from ground-based measurements of aerosol black carbon (BC) from a semi-urban site, Pantnagar (29.0 degrees N, 79.5 degrees E, 231 m amsl), in the Indo-Gangetic Plain (IGP) near the Himalayan foothills are analyzed to study the regional characterization. Large variations are seen in BC at both diurnal and seasonal scales, associated with the mesoscale and synoptic meteorological processes, and local/regional anthropogenic activities. BC diurnal variations show two peaks (morning and evening) arising from the combined effects of the atmospheric boundary layer (ABL) dynamics and local emissions. The diurnal amplitudes as well as the rates of diurnal evolution are the highest in winter season, followed by autumn, and the lowest in summer-monsoon. BC exhibits nearly an inverse relation with mixing layer depth in all seasons; being strongest in winter (R-2 = 0.89) and weakest (R-2 = 0.33) in monsoon (July-August). Unlike BC, co-located aerosol optical depths (AOD) and aerosol absorption are highest in spring over IGP, probably due to the presence of higher abundances of aerosols (including dust) above the ABL (in the free troposphere). AOD (500 nm) showed annual peak (>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominated in late autumn and early winter. Aerosols profiles from CALIPSO show highest values close to the surface in winter/autumn, similar to the feature seen in surface BC, whereas at altitudes > 2 km, the extinction is maximum in spring/summer. WRF-Chem model is used to simulate BC temporal variations and then compared with observed BC. The model captures most of the important features of the diurnal and seasonal variations but significantly underestimated the observed BC levels, suggesting improvements in diurnal and seasonal varying BC emissions apart from the boundary layer processes. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aircraft emissions of black carbon (BC) contribute to anthropogenic climate forcing and degrade air quality. The smoke number (SN) is the current regulatory measure of aircraft particulate matter emissions and quantifies exhaust plume visibility. Several correlations between SN and the exhaust mass concentration of BC (CBC) have been developed, based on measurements relevant to older aircraft engines. These form the basis of the current standard method used to estimate aircraft BC emissions (First Order Approximation version 3 [FOA3]) for the purposes of environmental impact analyses. In this study, BC with a geometric mean diameter (GMD) of 20, 30, and 60 nm and filter diameters of 19 and 35 mm are used to investigate the effect of particle size and sampling variability on SN measurements. For BC with 20 and 30 nm GMD, corresponding to BC emitted by modern aircraft engines, a smaller SN results from a given CBC than is the case for BC with 60 nm GMD, which is more typical of older engines. An updated correlation between CBC and SNthat accounts for typical size of BC emitted by modern aircraft is proposed. An uncertainty of ±25% accounts for variation in GMD in the range 20-30 nm and for the range of filter diameters. The SN-CBC correlation currently used in FOA3 underestimates by a factor of 2.5-3 for SN <15, implying that current estimates of aircraft BC emissions derived from SN are underestimated by the same factor. Copyright © American Association for Aerosol Research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Direct methanol fuel cell (DMFC) has attracted wide attention due to its many advantages. However, its practical application is limited by the low electrocatalytic activity of the anodic Pt/C catalyst usually used for the methanol oxidation. In this paper, in order to increase the electrocatalytic performance of the Pt/C catalyst for the methanol oxidation, the black carbon, usually used as the supporter, was pretreated with CO2, air, HNO3 or H2O2. The cyclic voltarnmetric results indicated that the current densities of the anodic peak of methanol oxidation at the Pt/C catalysts with the black carbon pretreated with CO2,air, HN03, H202 and untreated black carbon were 39, 33, 32, 20 and 18 mA center dot cm(-2), respectively, illustrating that among the above five kinds of the Pt/C catalysts, the Pt/C catalyst with the black carbon pretreated with CO2 shows the best electrocatalytic activity and stability for the methanol oxidation. Its main reason is that the CO2 pretreatment could reduce the content of the oxygen-containing groups on the surface of the black carbon and increase the content of graphite in the black carbon, leading to the low resistance of the black carbon and the increase in the dispersion extent of the Pt particles in the Pt/C catalyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (I PAH) pound in the surface sediments of China's marginal seas. BC content ranges from < 0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of I PAH pound in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest I PAH pound values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and I PAH pound in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concentrations and carbon isotopic (C-14, C-13) compositions of black carbon (BC) were measured for three sediment cores collected from the Changjiang River estuary and the shelf of the East China Sea. BC concentrations ranged from 0.02 to 0.14 mg/g (dry weight), and accounted for 5% to 26% of the sedimentary total organic carbon (TOC) pool. Among the three sediment cores collected at each site, sediment from the Changjiang River estuary had relatively high BC contents compared with the sediments from the East China Sea shelf, suggesting that the Changjiang River discharge played an important role in the delivery of BC to the coastal region. Radiocarbon measurements indicate that the ages of BC are in the range of 6910 to 12250 years old B. P. (before present), that is in general, 3700 to 9000 years older than the C-14 ages of TOC in the sediments. These variable radiocarbon ages suggest that the BC preserved in the sediments was derived from the products of both biomass fire and fossil fuel combustion, as well as from ancient rock weathering. Based on an isotopic mass balance model, we calculated that fossil fuel combustion contributed most (60%. 80%) of the BC preserved in these sediments and varied with depth and locations. The deposition and burial of this "slow-cycling" BC in the sediments of the East China Sea shelf represent a significant pool of carbon sink and could greatly influence carbon cycling in the region.