999 resultados para Carbon, inorganic, dissolved


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification affects with special intensity Arctic ecosystems, being marine photosynthetic organisms a primary target, although the consequences of this process in the carbon fluxes of Arctic algae are still unknown. The alteration of the cellular carbon balance due to physiological acclimation to an increased CO2 concentration (1300 ppm) in the common Arctic brown seaweeds Desmarestia aculeata and Alaria esculenta from Kongsfjorden (Svalbard) was analysed. Growth rate of D. aculeata was negatively affected by CO2 enrichment, while A. esculenta was positively affected, as a result of a different reorganization of the cellular carbon budget in both species. Desmarestia aculeata showed increased respiration, enhanced accumulation of storage biomolecules and elevated release of dissolved organic carbon, whereas A. esculenta showed decreased respiration and lower accumulation of storage biomolecules. Gross photosynthesis (measured both as O2 evolution and 14C fixation) was not affected in any of them, suggesting that photosynthesis was already saturated at normal CO2 conditions and did not participate in the acclimation response. However, electron transport rate changed in both species in opposite directions, indicating different energy requirements between treatments and species specificity. High CO2 levels also affected the N-metabolism, and 13C isotopic discrimination values from algal tissue pointed to a deactivation of carbon concentrating mechanisms. Since increased CO2 has the potential to modify physiological mechanisms in different ways in the species studied, it is expected that this may lead to changes in the Arctic seaweed community, which may propagate to the rest of the food web.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated ecological, physiological, and skeletal characteristics of the calcifying green alga Halimeda grown at CO2 seeps (pHtotal ? 7.8) and compared them to those at control reefs with ambient CO2 conditions (pHtotal ? 8.1). Six species of Halimeda were recorded at both the high CO2 and control sites. For the two most abundant species Halimeda digitata and Halimeda opuntia we determined in situ light and dark oxygen fluxes and calcification rates, carbon contents and stable isotope signatures. In both species, rates of calcification in the light increased at the high CO2 site compared to controls (131% and 41%, respectively). In the dark, calcification was not affected by elevated CO2 in H. digitata, whereas it was reduced by 167% in H. opuntia, suggesting nocturnal decalcification. Calculated net calcification of both species was similar between seep and control sites, i.e., the observed increased calcification in light compensated for reduced dark calcification. However, inorganic carbon content increased (22%) in H. digitata and decreased (-8%) in H. opuntia at the seep site compared to controls. Significantly, lighter carbon isotope signatures of H. digitata and H. opuntia phylloids at high CO2 (1.01 per mil [parts per thousand] and 1.94 per mil, respectively) indicate increased photosynthetic uptake of CO2 over HCO3- potentially reducing dissolved inorganic carbon limitation at the seep site. Moreover, H. digitata and H. opuntia specimens transplanted for 14 d from the control to the seep site exhibited similar delta13C signatures as specimens grown there. These results suggest that the Halimeda spp. investigated can acclimatize and will likely still be capable to grow and calcify in inline image conditions exceeding most pessimistic future CO2 projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to evaluate the effects of future climate conditions on photosynthesis and productivity of coastal phytoplankton. Natural phytoplankton assemblages were incubated in field mesocosms under the ambient condition (present condition: ca. 400 ppmv CO2 and ambient temp.), and two future climate conditions (acidification condition: ca. 900 ppmv CO2 and ambient temp.; greenhouse condition: ca. 900 ppmv CO2 and 3 °C warmer than ambient). Photosynthetic parameters of steady-state light responses curves (LCs; measured by PAM fluorometer) and photosynthesis-irradiance curves (P-I curves; estimated by in situ incorporation of 14C) were compared to three conditions during the experiment period. Under acidification, electron transport efficiency (alpha LC) and photosynthetic 14C assimilation efficiency (alpha) were 10% higher than those of the present condition, but maximum rates of relative electron transport (rETRm,LC) and photosynthetic 14C assimilation (PBmax) were lower than the present condition by about 19% and 7%, respectively. In addition, rETRm,LC and alpha LC were not significantly different between and greenhouse conditions, but PBmax and alpha of greenhouse conditions were higher than those of the present condition by about 9% and 30%, respectively. In particular, the greenhouse condition has drastically higher PBmax and alpha than the present condition more than 60% during the post-bloom period. According to these results, two future ocean conditions have major positive effects on the photosynthesis in terms of energy utilization efficiency for organic carbon fixation through the inorganic carbon assimilation. Despite phytoplankton taking an advantage on photosynthesis, primary production of phytoplankton was not stimulated by future conditions. In particular, biomass of phytoplankton was depressed under both acidification and greenhouse conditions after the the pre-bloom period, and more research is required to suggest that some factors such as grazing activity could be important for regulating phytoplankton bloom in the future ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable carbon isotope fractionation (%) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (pi), defined as the rate of carbon fixation during the photo period, when cultivated at 12:12 h. 16:8 h, or 186 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6% lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in pi. In contrast, E, in Phaeodactylum tn'cornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group 11) was largely insensitive to day length-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, pi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between E, and pi/[C02,,,] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [COz,,,], on isotopic fractionation. A decrease in [CO2,,,] from ca 26 to 3 pm01 kg-' caused a decrease in E, by less than 3%0 This indicates that variation in h in response to changes in day length has a similar or even greater effect on isotopic fractionation than [COz,,,] m some of the species tested. In both groups E, tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by l3C depletion in the 2 h before beginning of the following Light period. The daily amplitude of the algal isotopic composition (613C), however, was <1.5%0, which demonstrates that diurnal variation in Fl3C is relatively small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, andSyracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporusand of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentration, distribution, and dynamics of yellow substance were studied during 1980-1982. Colored material accounted for 17-41% of dissolved organic matter and 2-14% of suspended organic matter. A relationship of yellow substance levels with salinity is analyzed. Absorption spectra of suspended particles are studied, occurrence of yellow-colored particles in suspended phase and their distribution in the Gulf of Riga are described. Concentration of suspended yellow organic matter in the upper layer of the gulf was inversely correlated with salinity. Calculations show that 10% of terrigenous humus is flocculated in the gulf during spring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification studies in the past decade have greatly improved our knowledge of how calcifying organisms respond to increased surface ocean CO2 levels. It has become evident that, for many organisms, nutrient availability is an important factor that influences their physiological responses and competitive interactions with other species. Therefore, we tested how simulated ocean acidification and eutrophication (nitrate and phosphate enrichment) interact to affect the physiology and ecology of a calcifying chlorophyte macroalga (Halimeda opuntia (L.) J.V. Lamouroux) and its common noncalcifying epiphyte (Dictyota sp.) in a 4-week fully crossed multifactorial experiment. Inorganic nutrient enrichment (+NP) had a strong influence on all responses measured with the exception of net calcification. Elevated CO2 alone significantly decreased electron transport rates of the photosynthetic apparatus and resulted in phosphorus limitation in both species, but had no effect on oxygen production or respiration. The combination of CO2 and +NP significantly increased electron transport rates in both species. While +NP alone stimulated H. opuntia growth rates, Dictyota growth was significantly stimulated by nutrient enrichment only at elevated CO2, which led to the highest biomass ratios of Dictyota to Halimeda. Our results suggest that inorganic nutrient enrichment alone stimulates several aspects of H. opuntia physiology, but nutrient enrichment at a CO2 concentration predicted for the end of the century benefits Dictyota sp. and hinders its calcifying basibiont H. opuntia.