965 resultados para Canadian High Arctic
Resumo:
Determining the manner in which food webs will respond to environmental changes is difficult because the relative importance of top-down vs. bottom-up forces in controlling ecosystems is still debated. This is especially true in the Arctic tundra where, despite relatively simple food webs, it is still unclear which forces dominate in this ecosystem. Our primary goal was to assess the extent to which a tundra food web was dominated by plant-herbivore or predator--rey interactions. Based on a 17-year (1993-2009) study of terrestrial wildlife on Bylot Island, Nunavut, Canada, we developed trophic mass balance models to address this question. Snow Geese were the dominant herbivores in this ecosystem, followed by two sympatric lemming species (brown and collared lemmings). Arctic foxes, weasels, and several species of birds of prey were the dominant predators. Results of our trophic models encompassing 19 functional groups showed that <10% of the annual primary production was consumed by herbivores in most years despite the presence of a large Snow Goose colony, but that 20-100% of the annual herbivore production was consumed by predators. The impact of herbivores on vegetation has also weakened over time, probably due to an increase in primary production. The impact of predators was highest on lemmings, intermediate on passerines, and lowest on geese and shorebirds, but it varied with lemming abundance. Predation of collared lemmings exceeded production in most years and may explain why this species remained at low density. In contrast, the predation rate on brown lemmings varied with prey density and may have contributed to the high-amplitude, periodic fluctuations in the abundance of this species. Our analysis provided little evidence that herbivores are limited by primary production on Bylot Island. In contrast, we measured strong predator-prey interactions, which supports the hypothesis that this food web is primarily controlled by top-down forces. The presence of allochthonous resources subsidizing top predators and the absence of large herbivores may partly explain the predominant role of predation in this low-productivity ecosystem.
Resumo:
A 2.9 m long sedimentary record was studied from a small lake, here referred to as Duck Lake, located at 76°25'N, 18°45'W on Store Koldewey, an elongated island off the coast of Northeast Greenland. The sediments were investigated for their geophysical and biogeochemical characteristics, and for their fossil chironomid assemblages. Organic matter began to accumulate in the lake at 9.1 cal. kyr BP, which provides a minimum age for the deglaciation of the basin. Although the early to mid-Holocene is known as a thermal maximum in East Greenland, organic matter accumulation in the lake remained low during the early Holocene, likely due to late plant immigration and lack of nutrient availability. Organic matter accumulation increased during the middle and late Holocene, when temperatures in East Greenland gradually decreased. Enhanced soil formation probably led to higher nutrient availability and increased production in the lake. Chironomids are abundant throughout the record after 9.1 cal. kyr BP and seem to react sensitively to changes in temperature and nutrient availability. It is concluded that relative temperature reconstructions based on biogeochemical data have to be regarded critically, particularly in the period shortly after deglaciation when nutrient availability was low. Chironomids may be a suitable tool for climatic reconstructions even in those high arctic environments. However, a better understanding of the ecology of chironomids under these extreme conditions is needed.
Resumo:
Two sediment cores of 70 and 252 cm length were recovered from Hjort Sø, a small lake on Store Koldewey, Northeast Greenland, and studied with a multidisciplinary approach in order to reconstruct the local environmental history and to test the relevance of proxies for paleoenvironmental information. The basal sediments from the longer core are dominated by clastic matter, which was likely deposited during deglaciation of the lake basin. These clastic sediments are overlain by gyttja, which is also present throughout the shorter core. AMS radiocarbon dating was conducted on plant macrofossils of 11 samples from the gyttja in both cores. A reliable chronology was established for both cores, which dated the onset of organic accumulation at 9,500 cal. year BP. The Holocene temperature development, with an early to mid Holocene thermal maximum, is best reflected in the grain-size composition. Nutrient availability was apparently low during the early Holocene and led to low productivity in the lake and its vicinity. From ca. 7,000 cal. year BP, productivity in the lake increased significantly, probably induced by external nutrient input from goose excrements. From this time, micro- and macrofossil remains reflect relatively well the climate history of East Greenland, with a cooling during the middle Holocene, the medieval warming, and the Little Ice Age. The amount of organic matter in the sequence seems to be more affected by lake ice cover or by nutrient supply from the catchment than by temperature changes. The record from Hjort Sø thus reveals the difficulties in interpreting sedimentary records from high arctic regions.
Resumo:
Late Quaternary sediment yields from the Isfjorden drainage area (7327 km**2), a high arctic region on Svalbard characterized by an alpine landscape, have been reconstructed by using seismic stratigraphy supported by sediment core analysis. The sediments that accumulated in the fjord during and since deglaciation can be divided into three stratigraphic units. The volumes of these units were determined and converted into sediment yield rates averaged over the drainage basin. During deglaciation, 13 to 10 ka, the sediment yield was ~860 tons(t)/km**2/yr. In the early Holocene it decreased to 190 t/km**2/yr, and then increased to 390t/km**2/yr during the late Holocene Little Ice Age. When normalized to the approximate glacierized area, these rates correspond to a sediment yield of ~800 t/km**2/yr . Sediment yield from non-glacierized parts of the drainage is estimated to be 35 t/km**2/yr. At times when ice advanced to the shelf edge, sediment was scoured from the fjord and deposited on the outer shelf and in a well-defined deep sea fan. Between 200 ka and 13 ka, 328 km**3 of sediment accumulated here, corresponding to a mean sediment yield rate of 335 t/km**2/yr. This is broadly consistent with calculations based on the above rates of sediment yield in glacierized and non-glacierized areas, and on estimates, based on glacial geology, of the temporal variation in degree of glacierization over the past 200 kyr. These figures indicate that much of the glacigenic sediment on the shelf and slope was eroded from the uplands of Svalbard by small glaciers during interstadials and interglacials. The sediments were temporarily stored in the fjord prior to redeposition on the shelf and slope during ice sheet advance. Taken into consideration, such redisposition of pre-eroded material will reduce estimates of primary ice sheet erosion rate.
Resumo:
Acknowledgements The excavation was funded by the City of Reykjavík, and the geoarchaeological research was funded by a SSHRCC Doctoral Fellowship from the government of Canada, an Overseas Research Studentship, the Cambridge Commonwealth Trust, Pelham Roberts and Muriel Onslow Research Studentships from Newnham College, Cambridge, and Canadian Centennial Scholarships from the Canadian High Commission in London. Garðar Guðmundsson took the micromorphology samples, and supervised sampling on site. The bones were counted by Clayton Tinsley, the thin sections were made by Julie Boreham, and Steve Boreham and his team in the Department of Geography, University of Cambridge, provided technical support for all of the bulk geochemical analyses that were conducted by K. Milek, except for ICP–AES, which was conducted by ALS Chemex. Our gratitude is extended to Charles French, Catherine Hills, Peter Jordan and two anonymous reviewers for their support and helpful comments on earlier drafts of this paper, and to Óskar Gísli Sveinbjarnarson for his assistance with the figures.
Resumo:
Acknowledgements The excavation was funded by the City of Reykjavík, and the geoarchaeological research was funded by a SSHRCC Doctoral Fellowship from the government of Canada, an Overseas Research Studentship, the Cambridge Commonwealth Trust, Pelham Roberts and Muriel Onslow Research Studentships from Newnham College, Cambridge, and Canadian Centennial Scholarships from the Canadian High Commission in London. Garðar Guðmundsson took the micromorphology samples, and supervised sampling on site. The bones were counted by Clayton Tinsley, the thin sections were made by Julie Boreham, and Steve Boreham and his team in the Department of Geography, University of Cambridge, provided technical support for all of the bulk geochemical analyses that were conducted by K. Milek, except for ICP–AES, which was conducted by ALS Chemex. Our gratitude is extended to Charles French, Catherine Hills, Peter Jordan and two anonymous reviewers for their support and helpful comments on earlier drafts of this paper, and to Óskar Gísli Sveinbjarnarson for his assistance with the figures.
Resumo:
Samples (blood or tissue fluid) from 594 arctic foxes (Alopex lagopus), 390 Svalbard reindeer (Rangifer tarandus platyrhynchus), 361 sibling voles (Microtus rossiaemeridionalis), 17 walruses (Odobenus rosmarus), 149 barnacle geese (Branta leucopsis), 58 kittiwakes (Rissa tridactyla), and 27 glaucous gulls (Larus hyperboreus) from Svalbard and nearby waters were assayed for antibodies against Toxoplasma gondii using a direct agglutination test. The proportion of seropositive animals was 43% in arctic foxes, 7% in barnacle geese, and 6% (1 of 17) in walruses. There were no seropositive Svalbard reindeer, sibling voles, glaucous gulls, or kittiwakes. The prevalence in the arctic fox was relatively high compared to previous reports from canid populations. There are no wild felids in Svalbard and domestic cats are prohibited, and the absence of antibodies against T gondii among the herbivorous Svalbard reindeer and voles indicates that transmission of the parasite by oocysts is not likely to be an important mechanism in the Svalbard ecosystem. Our results suggest that migratory birds, such as the barnacle goose, may be the most important vectors bringing the parasite to Svalbard. In addition to transmission through infected prey and carrion, the age-seroprevalence profile in the fox population suggests that their infection levels are enhanced by vertical transmission.
Resumo:
Multi-channel ground-penetrating radar is used to investigate the late-summer evolution of the thaw depth and the average soil water content of the thawed active layer at a high-arctic continuous permafrost site on Svalbard, Norway. Between mid of August and mid of September 2008, five surveys have been conducted over transect lengths of 130 and 175 m each. The maximum thaw depths range from 1.6 m to 2.0 m, so that they are among the deepest thaw depths recorded for Svalbard so far. The thaw depths increase by approximately 0.2 m between mid of August and beginning of September and subsequently remain constant until mid of September. The thaw rates are approximately constant over the entire length of the transects within the measurement accuracy of about 5 to 10 cm. The average volumetric soil water content of the thawed soil varies between 0.18 and 0.27 along the investigated transects. While the measurements do not show significant changes in soil water content over the first four weeks of the study, strong precipitation causes an increase in average soil water content of up to 0.04 during the last week. These values are in good agreement with evapotranspiration and precipitation rates measured in the vicinity of the the study site. While we cannot provide conclusive reasons for the detected spatial variability of the thaw depth at the study site, our measurements show that thaw depth and average soil water content are not directly correlated. The study demonstrates the potential of multi-channel ground-penetrating radar for mapping thaw depth in permafrost areas. The novel non-invasive technique is particularly useful when the thaw depth exceeds 1.5 m, so that it is hardly accessible by manual probing. In addition, multi-channel ground-penetrating radar holds potential for mapping the latent heat content of the active layer and for estimating weekly to monthly averages of the ground heat flux during the thaw period.
Resumo:
Breeding in the high Arctic is time constrained and animals should therefore start with their annual reproduction as early as possible. To allow for such early reproduction in migratory birds, females arrive at the breeding grounds either with body stores or they try to rapidly develop their eggs after arrival using local resources. Svalbard breeding barnacle geese Branta leucopsis have to fly non-stop for about 1100 km from their last continental staging site to the archipelago making the transport of body stores costly. However, environmental conditions at the breeding grounds are highly unpredictable favouring residual body stores allowing for egg production after arrival on the breeding grounds. We estimated the reliance on southern continental resources, i.e. body stores for egg formation, in barnacle geese using stable isotope ratios in the geese's forage along the flyway and in their eggs. Females adopted mixed breeding strategies by using southern resources as well as local resources to varying extents for egg formation. Southern capital in lipid-free yolk averaged 41% (range: 23-65%), early laid eggs containing more southern capital than eggs laid late in the season. Yolk lipids and albumen did not vary over time and averaged a southern capital proportion of 54% (range: 32-73%) and 47% (range: 25-88%), respectively. Our findings indicate that female geese vary the use of southern resources when synthesizing their eggs and this allocation also varies among egg tissues. Their mixed and flexible use of distant and local resources potentially allows for adaptive adjustments to environmental conditions encountered at the archipelago just before breeding.
Resumo:
Here, we present a first (low-resolution) biomarker sea-ice proxy record from the High Arctic (southern Lomonosov Ridge), going back in time to about 60 ka (MIS 3 to MIS 1). Variable concentrations of the sea-ice diatom specific highly branched isoprenoid (HBI) with 25 carbon atoms ("IP25"), in combination with the phytoplankton biomarker brassicasterol, suggest variable seasonal sea-ice coverage and open-water productivity during MIS 3. During most of MIS 2, the spring to summer sea-ice margin significantly extended towards the south, resulting in a drastic decrease in phytoplankton productivity. During the Early Holocene Climate Optimum, brassicasterol reached its maximum, interpreted as signal for elevated phytoplankton productivity due to a significantly reduced sea-ice cover. During the mid-late Holocene, IP25 increased and brassicasterol decreased, indicating extended sea-ice cover and reduced phytoplankton productivity, respectively. The HBI diene/IP25 ratios probably reached maximum values during the Bølling-Allerød warm period and decreased during the Holocene, suggesting a correlation with sea-surface temperature.