1000 resultados para Campo geomagnetico,Geodinamo,Inversioni di polarità,comportamento caotico
Resumo:
La tesi analizza le principali metodologie e tecniche per il recupero e il consolidamento di edifici in muratura esistenti. Dopo un’iniziale descrizione dei materiali costituenti e delle possibili tipologie costruttive, si evidenziano le caratteristiche meccaniche e le verifiche da attuare in base alle normative vigenti. Vengono poi analizzati i principali elementi strutturali e le norme generali per gli edifici in muratura, nonché i possibili metodi di intervento in base al livello di conoscenza delle costruzioni esistenti. Infine, dopo aver presentato le più importanti indagini e prove, vengono descritte le principali tecniche di consolidamento e i criteri per gli interventi sugli edifici in muratura.
Resumo:
Tesi riguardo la fase preliminare di una campagna sperimentale su elementi rinforzati a flessione e taglio con fibra di basalto e malta e successivamente testati al fuoco. Comprende una parte relativa al comportamento dei comositi allle alte temperature e una sul problema della delaminazione alle alte temperature. Sono inoltre condotte simulazione numeriche relativamente al problema dell trasmissione del calore all'interno della sezione, con particolare attenzione alla modellazione dell'intuemescente. Sono stati eseguite prove di pull-out sui rinforzi e una serie di prove a compressione a caldo sulla malta d'incollaggio.
Resumo:
Questa tesi affronta lo studio di una tipologia di vibrazione autoeccitata, nota come chatter, che si manifesta nei processi di lavorazione ad asportazione di truciolo ed in particolare nelle lavorazioni di fresatura. La tesi discute inoltre lo sviluppo di una tecnica di monitoraggio e diagnostica del chatter basato sul rilievo di vibrazioni. Il fenomeno del chatter è caratterizzato da violente oscillazioni tra utensile e pezzo in lavorazione ed elevate emissioni acustiche. Il chatter, se non controllato, causa uno scadimento qualitativo della finitura superficiale e delle tolleranze dimensionali del lavorato, una riduzione della vita degli utensili e dei componenti della macchina. Questa vibrazione affligge negativamente la produttività e la qualità del processo di lavorazione e pregiudica l’interazione uomo-macchina-ambiente. Per una data combinazione di macchina, utensile e pezzo lavorato, i fattori che controllano la velocità di asportazione del materiale sono gli stessi che controllano l’insorgenza del chatter: la velocità di rotazione del mandrino, la profondità assiale di passata e la velocità di avanzamento dell’utensile. Per studiare il fenomeno di chatter, con l’obbiettivo di individuare possibili soluzioni per limitarne o controllarne l’insorgenza, vengono proposti in questa tesi alcuni modelli del processo di fresatura. Tali modelli comprendono il modello viscoelastico della macchina fresatrice e il modello delle azioni di taglio. Per le azioni di taglio è stato utilizzato un modello presente in letteratura, mentre per la macchina fresatrice sono stati utilizzato modelli a parametri concentrati e modelli modali analitico-sperimentali. Questi ultimi sono stati ottenuti accoppiando un modello modale sperimentale del telaio, completo di mandrino, della macchina fresatrice con un modello analitico, basato sulla teoria delle travi, dell’utensile. Le equazioni del moto, associate al processo di fresatura, risultano essere equazioni differenziali con ritardo a coefficienti periodici o PDDE (Periodic Delay Diefferential Equations). È stata implementata una procedura numerica per mappare, nello spazio dei parametri di taglio, la stabilità e le caratteristiche spettrali (frequenze caratteristiche della vibrazione di chatter) delle equazioni del moto associate ai modelli del processo di fresatura proposti. Per testare i modelli e le procedure numeriche proposte, una macchina fresatrice CNC 4 assi, di proprietà del Dipartimento di Ingegneria delle Costruzioni Meccaniche Nucleari e Metallurgiche (DIEM) dell’Università di Bologna, è stata strumentata con accelerometri, con una tavola dinamometrica per la misura delle forze di taglio e con un adeguato sistema di acquisizione. Eseguendo varie prove di lavorazione sono stati identificati i coefficienti di pressione di taglio contenuti nel modello delle forze di taglio. Sono stati condotti, a macchina ferma, rilievi di FRFs (Funzioni Risposta in Frequenza) per identificare, tramite tecniche di analisi modale sperimentale, i modelli del solo telaio e della macchina fresatrice completa di utensile. I segnali acquisiti durante le numerose prove di lavorazione eseguite, al variare dei parametri di taglio, sono stati analizzati per valutare la stabilità di ciascun punto di lavoro e le caratteristiche spettrali della vibrazione associata. Questi risultati sono stati confrontati con quelli ottenuti applicando la procedura numerica proposta ai diversi modelli di macchina fresatrice implementati. Sono state individuate le criticità della procedura di modellazione delle macchine fresatrici a parametri concentrati, proposta in letteratura, che portano a previsioni erronee sulla stabilità delle lavorazioni. È stato mostrato come tali criticità vengano solo in parte superate con l’utilizzo dei modelli modali analitico-sperimentali proposti. Sulla base dei risultati ottenuti, è stato proposto un sistema automatico, basato su misure accelerometriche, per diagnosticare, in tempo reale, l’insorgenza del chatter durante una lavorazione. È stato realizzato un prototipo di tale sistema di diagnostica il cui funzionamento è stato provato mediante prove di lavorazione eseguite su due diverse macchine fresatrici CNC.
Resumo:
I materiali polimerici espansi sono utilizzati come core di pannelli compositi di tipo sandwich (tipicamente a base di polivinilcloruro, polistirene e poliuretani). Negli ultimi anni molte ricerche si sono concentrate sulla possibilità di aumentare le loro proprietà meccaniche, termiche, di resistenza agli agenti esterni, ignifughe, etc cercando contemporaneamente la diminuzione del peso e del costo (sia delle materia prime che di processo). In questo contesto, l’obiettivo di questa tesi di laurea è lo studio, la preparazione e la caratterizzazione di espansi in PVC di natura cross-linked per la produzione di pannelli compositi a sandwich potenzialmente utilizzabili in campo eolico e navale.
Resumo:
INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.
Resumo:
Proposta di Linee Guida Italiane per la progettazione di opere di sostegno in terra rinforzata con geosintetici
Resumo:
Scopo di questa tesi di dottorato è stabilire se l’obiezione di coscienza in ambito medico sia moralmente giustificabile. Esistono essenzialmente tre tipi di rifiuto motivati dall’obiezione di coscienza (1) rifiuto di informare un paziente relativamente alle opzioni terapeutiche come ad esempio l’uso di un contraccettivo di emergenza o l’interruzione volontaria di gravidanza (2) rifiuto di rinviare un paziente che chiede un particolare intervento (o terapia) presso un collega non obiettore (3) rifiuto di svolgere in prima persona una certa attività richiesta dal paziente Per rispondere a questo interrogativo si è svolta un’analisi filosofico-morale dei principali argomenti utilizzati dalla letteratura su questo tema per giustificare o per negare un diritto morale all’obiezione di coscienza degli operatori sanitari. Il diritto degli operatori sanitari all’integrità morale e a non essere complici di attività ritenute immorali dev’essere infatti confrontato con il diritto dei pazienti ad avere un’assistenza sanitaria efficiente, a poter compiere scelte autonome riguardo alla propria salute e ad essere informati relativamente a tutte le opzioni terapeutiche disponibili. Nel corso dell’intero lavoro è stato dimostrato come suddetti diritti dei pazienti sono facilmente e frequentemente violati a causa dell’incidenza dell’obiezione di coscienza in ambito medico. L’analisi condotta nel corso del lavoro di tesi si concentra fondamentalmente su quattro importanti aspetti del problema quali diritto all’integrità morale dell’ operatore sanitario, obblighi professionali, cooperazione al male e laicità dello stato. Alla fine del lavoro di analisi si è giunti alla conclusione che: le obiezioni di tipo (1) e (2) non sono mai moralmente giustificabili perché comportano sempre una violazione dei diritti fondamentali del paziente. Le obiezioni di coscienza di tipo (3) sono moralmente accettabili solo quando non impongono un peso eccessivo al paziente, vale a dire quando il rinvio presso un collega non obiettore è veloce, sicuro e agevole. Tuttavia le condizioni ideali in cui vengono rispettati i criteri minimi di ammissibilità dell’obiezione di coscienza di tipo (3) non si verificano quasi mai nella realtà dei fatti (per ragioni ampiamente spiegate nel corso del lavoro), per cui tali obiezioni risultano in pratica solo raramente accettabili da un punto d vista morale.
Il pensiero politico internazionale di Montesquieu: tra la geopolitica e le relazioni internazionali
Resumo:
La tesi ha mostrato come il pensiero politico di Montesquieu possa costituire un utile riferimento teorico per affrontare il problema della ricontestualizzazione dello studio delle relazioni internazionali. La prima parte del lavoro evidenzia alcuni aspetti del metodo di ricerca e del pensiero politico di Montesquieu. Nel primo capitolo, è stato identificato un metodo di ricerca ed un approccio sociologico nello studio della politica, che rappresenta un precedente rispetto alla fondazione di una scienza politica che si propone di identificare nessi causali tra i fenomeni politici. In particolare, si deve riconoscere a Montesquieu il merito di aver introdotto un tipo di analisi della politica che consideri l’interazione di più fattori tra loro. La complessità del reale può essere spiegata soltanto identificando i rapporti che si formano tra gli elementi della realtà. Quindi è possibile porre dei principi in grado di produrre un ordine conoscibile ed interpretabile di tutti questi elementi. Nel secondo capitolo è stata presentata un’analisi delle tipologie delle forme di governo e del concetto di libertà politica. Questo capitolo ha evidenziato solo alcuni aspetti del pensiero politico di Montesquieu utili alla comprensione del pensiero politico internazionale. In particolare, è stata analizzata la struttura e il ressort di ogni forma di governo sottolineando gli aspetti di corruzione e i relativi processi di mutamento. La seconda parte del lavoro ha affrontato l’analisi di un pensiero politico internazionale ed ha evidenziato la rilevanza di una riflessione geopolitica. Nel terzo capitolo abbiamo mostrato l’emersione di una riflessione su alcuni argomenti di relazioni internazionali, quali il problema della guerra e della pace, il diritto internazionale e l’interdipendenza economica, legandoli alle forme di governo. Quindi sono stati identificati ed analizzati tre modelli di sistema internazionale sottolineando in particolare il nesso con il concetto di società internazionale. Tra questi modelli di sistema internazionale, quello che presenta le caratteristiche più singolari, è certamente il sistema della federazione di repubbliche. Infine, nell’ultimo capitolo, abbiamo evidenziato l’importanza della rappresentazione spaziale del mondo di Montesquieu e l’uso di categorie concettuali e metodi di analisi della geopolitica. In particolare, è stata rilevata l’importanza dell’aspetto dimensionale per la comprensione delle dinamiche di ascesa e declino delle forme di Stato e delle forme di governo. Si è mostrato come non sia possibile ascrivere il pensiero di Montesquieu nella categoria del determinismo geografico o climatico. Al contrario, abbiamo evidenziato come tale pensiero possa essere considerato un precedente di una corrente di pensiero della geopolitica francese definita “possibilismo”. Secondo questa teoria i fattori ambientali, più che esercitare un’azione diretta sul comportamento dell’uomo, agiscono selezionando il campo delle scelte possibili.