988 resultados para Cam


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durante el gobierno de Löpez Rega, los primeros operativos comenzaron en el año 1974 actuando agrupados bajo en nombre de Alianza Anticomunista Argentina. En Mendoza, durante el gobierno de Cafiero, actuaba la CAM (comando anticomunista Mendoza), los cuales tenían como misión detener a los grupos que se oponían al gobierno. En muchos lugares de Mendoza se colocaron bombas, se destruyeron teatros, clubes, casas y vidas.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Higher Education Area (EHEA) has leaded to a change in the way the subjects are taught. One of the more important aspects of the EHEA is to support the autonomous study of the students. Taking into account this new approach, the virtual laboratory of the subject Mechanisms of the Aeronautical studies at the Technical University of Madrid is being migrated to an on-line scheme. This virtual laboratory consist on two practices: the design of cam-follower mechanisms and the design of trains of gears. Both practices are software applications that, in the current situation, need to be installed on each computer and the students carry out the practice at the computer classroom of the school under the supervision of a teacher. During this year the design of cam-follower mechanisms practice has been moved to a web application using Java and the Google Development Toolkit. In this practice the students has to design and study the running of a cam to perform a specific displacement diagram with a selected follower taking into account that the mechanism must be able to work properly at high speed regime. The practice has maintained its objectives in the new platform but to take advantage of the new methodology and try to avoid the inconveniences that the previous version had shown. Once the new practice has been ready, a pilot study has been carried out to compare both approaches: on-line and in-lab. This paper shows the adaptation of the cam and follower practice to an on-line methodology. Both practices are described and the changes that has been done to the initial one are shown. They are compared and the weak and strong points of each one are analyzed. Finally we explain the pilot study carried out, the students impression and the results obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European Higher Education Area (EHEA) has leaded to a change in the way the subjects are taught. One of the more important aspects of the EHEA is to support the autonomous study of the students. Taking into account this new approach, the virtual laboratory of the subject Mechanisms of the Aeronautical studies at the Technical University of Madrid is being migrated to an on-line scheme. This virtual laboratory consist on two practices: the design of cam-follower mechanisms and the design of trains of gears. Both practices are software applications that, in the current situation, need to be installed on each computer and the students carry out the practice at the computer classroom of the school under the supervision of a teacher. During this year the design of cam-follower mechanisms practice has been moved to a web application using Java and the Google Development Toolkit. In this practice the students has to design and study the running of a cam to perform a specific displacement diagram with a selected follower taking into account that the mechanism must be able to work properly at high speed regime. The practice has maintained its objectives in the new platform but to take advantage of the new methodology and try to avoid the inconveniences that the previous version had shown. Once the new practice has been ready, a pilot study has been carried out to compare both approaches: on-line and in-lab. This paper shows the adaptation of the cam and follower practice to an on-line methodology. Both practices are described and the changes that has been done to the initial one are shown. They are compared and the weak and strong points of each one are analyzed. Finally we explain the pilot study carried out, the students impression and the results obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After a penetrating lesion in the central nervous system, astrocytes enlarge, divide, and participate in creating an environment that adversely affects neuronal regeneration. We have recently shown that the neural cell adhesion molecule (N-CAM) partially inhibits the division of early postnatal rat astrocytes in vitro. In the present study, we demonstrate that addition of N-CAM, the third immunoglobulin-like domain of N-CAM, or a synthetic decapeptide corresponding to a putative homophilic binding site in N-CAM partially inhibits astrocyte proliferation after a stab lesion in the adult rat brain. Animals were lesioned in the cerebral cortex, hippocampus, or striatum with a Hamilton syringe and needle at defined stereotaxic positions. On one side, the lesions were concomitantly infused with N-CAM or with one of the N-CAM-related molecules. As a control, a peptide of the same composition as the N-CAM decapeptide but of random sequence was infused on the contralateral side of the brain. We consistently found that the population of dividing astrocytes was significantly smaller on the side in which N-CAM or one of the N-CAM-related molecules was infused than on the opposite side. The inhibition was greatest in the cortical lesion sites (approximately 50%) and was less pronounced in the hippocampus (approximately 25%) and striatum (approximately 20%). Two weeks after the lesion, the cerebral cortical sites infused with N-CAM continued to exhibit a significantly smaller population of dividing astrocytes than the sites on the opposite side. When N-CAM and basic fibroblast growth factor, which is known to stimulate astrocyte division in vitro, were coinfused into cortical lesion sites, astrocyte proliferation was still inhibited. These results suggest the hypothesis that, by reducing glial proliferation, N-CAM or its peptides may help create an environment that is more suitable for neuronal regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments. Design/methodology/approach – The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations. Findings – This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM. Originality/value – The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the GoPro camera was first put on the market in 2004, it brought about a new generation of ultracompact cameras designed to be attached to the user’s body, and which came to be known as action cams. Their principal characteristics were their tiny size, their high-quality images and a wide-angle, fixed-focal-length lens. This combination has made it much simpler to get spectacular subjective shots with considerable depth of field. The users of this technology now form a whole generation of citizen-filmmakers who produce thousands of videos every day in a novel realistic style dominated by first-person narrative. Their work is principally shared via video platforms like YouTube and Vimeo, which provide instant feedback in the form of millions of views. In this paper we analize the common features of the action cam recording style and we state these videos will bring about a redefinition of the realist visual style. Furthermore, we propose to relate the success of the action cam phenomenon with the cognitive concept of embodiment and argue that the viewer’s mirror neurons copy the real sensations and enable the viewer to experience, virtually and in safety, the same emotions felt by the person actually taking part in the action.