989 resultados para Calcium channel antagonism
Resumo:
BACKGROUND: Changes in antihypertensive drug treatment are paramount in the adequate management of patients with hypertension, still, there is little information regarding changes in antihypertensive drug treatment in Switzerland. Our aim was to assess those changes and associated factors in a population-based, prospective study. METHODS: Data from the population-based, CoLaus study, conducted among subjects initially aged 35-75 years and living in Lausanne, Switzerland. 772 hypertensive subjects (371 women) were followed for a median of 5.4 years. Data Subjects were defined as continuers (no change), switchers (one antihypertensive class replaced by another), combiners (one antihypertensive class added) and discontinuers (stopped treatment). The distribution and the factors associated with changes in antihypertensive drug treatment were assessed. RESULTS: During the study period, the prescription of diuretics decreased and of ARBs increased: at baseline, diuretics were taken by 46.9% of patients; angiotensin receptor blockers (ARB) by 44.7%, angiotensin converting enzyme inhibitors (ACEI) by 28.8%, beta-blockers (BB) by 28.0%, calcium channel blockers (CCB) by 18.9% and other antihypertensive drugs by 0.3%. At follow-up (approximately 5 years later), their corresponding percentages were 42.8%, 51.7%, 25.5%, 33.0% 20.7% and 1.0%. Among all participants, 54.4% (95% confidence interval: 50.8-58.0) were continuers, 26.9% (23.8-30.2) combiners, 12.7% (10.4-15.3) switchers and 6.0% (4.4-7.9) discontinuers. Combiners had higher systolic blood pressure values at baseline than the other groups (p < 0.05). Almost one third (30.6%) of switchers and 29.3% of combiners improved their blood pressure status at follow-up, versus 18.8% of continuers and 8.7% of discontinuers (p < 0.001). Conversely, almost one third (28.3%) of discontinuers became hypertensive (systolic ≥140 mm Hg or diastolic ≥90 mm Hg), vs. 22.1% of continuers, 16.3% of switchers and 11.5% of combiners (p < 0.001). Multivariate analysis showed baseline uncontrolled hypertension, ARBs, drug regimen (monotherapy/polytherapy) and overweight/obesity to be associated with changes in antihypertensive therapy. CONCLUSION: In Switzerland, ARBs have replaced diuretics as the most commonly prescribed antihypertensive drug. Uncontrolled hypertension, ARBs, drug regimen (monotherapy or polytherapy) and overweight/obesity are associated with changes in antihypertensive treatment.
Resumo:
Dominant mutations in the receptor calcium channel gene TRPV4 have been associated with a family of skeletal dysplasias (metatropic dysplasia, pseudo-Morquio type 2, spondylometaphyseal dysplasia, Kozlowski type, brachyolmia, and familial digital arthropathy) as well as with dominantly inherited neuropathies (hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy, and congenital distal spinal muscular atrophy). While there is phenotypic overlap between the various members of each group, the two groups were considered to be totally separate with the former being strictly a structural skeletal condition and the latter group being confined to the peripheral nervous system. We report here on fetal akinesia as the presenting feature of severe metatropic dysplasia, suggesting that certain TRPV4 mutations can cause both a skeletal and a neuropathic phenotype. Three cases were detected on prenatal ultrasound because of absent movements in the second trimester. Case 4 presented with multiple joint contractures and absent limb movements at birth and was diagnosed with "fetal akinesia syndrome". Post-interruption and post-natal X-rays showed typical features of metatropic dysplasia in all four. Sequencing of the TRPV4 gene confirmed the presence of de novo heterozygous mutations predicting G78W (Case 1), T740I (Cases 2 and 3), and K276E (Case 4). Although some degree of restriction of movements is not uncommon in fetuses with skeletal dysplasia, akinesia as leading sign is unusual and suggests that certain TRPV4 mutations produce both chondrodysplasia and a peripheral neuropathy resulting in a severe "overlap" phenotype.
Resumo:
Currently 4 classes of antihypertensive drugs - diuretics, beta-blockers, calcium channel blockers and angiotensin-converting enzyme (ACE) inhibitors - are most commonly used to treat hypertensive patients. Each class of drug has a distinctive cardiovascular pharmacodynamic profile and even within classes there exist agents with slightly different properties. The effects of the various drug classes on the heart and peripheral circulation, on the kidney and electrolyte metabolism, on the brain and on the renin-angiotensin system are now reasonably well described. Knowledge and understanding of these different cardiovascular effects are extremely important in order to adapt treatment to the needs of an individual patient. Furthermore, when combination therapy becomes necessary, the different cardiovascular aspects of the various drugs can be used to enhance antihypertensive efficacy and to attenuate adverse effects of separate compounds.
Resumo:
Recent guidelines recommend initiation of antihypertensive therapy with fixed-dose combinations in high-risk patients because such patients usually need two or more blood pressure (BP)-lowering agents in order to normalize their BP. Agents that block the renin-angiotensin system (ACE inhibitors or angiotensin II receptor antagonists [angiotensin receptor blockers; ARBs]) are preferred for the management of hypertension in most patients exhibiting subclinical target organ damage, or established cardiovascular or renal diseases. Unless contraindicated they should be one of the components of fixed-dose combinations, whereas the other component may be either a calcium channel antagonist or a thiazide diuretic. Fixed-dose combinations containing an ACE inhibitor or ARB plus a calcium channel antagonist appear particularly effective in preventing complications of coronary heart disease.
Resumo:
The aim of this work is to present a new concept, called on-line desorption of dried blood spots (on-line DBS), allowing the direct analysis of a dried blood spot coupled to liquid chromatography mass spectrometry device (LC/MS). The system is based on an inox cell which can receive a blood sample (10 microL) previously spotted on a filter paper. The cell is then integrated into LC/MS system where the analytes are desorbed out of the paper towards a column switching system ensuring the purification and separation of the compounds before their detection on a single quadrupole MS coupled to atmospheric pressure chemical ionisation (APCI) source. The described procedure implies that no pretreatment is necessary in spite the analysis is based on whole blood sample. To ensure the applicability of the concept, saquinavir, imipramine, and verapamil were chosen. Despite the use of a small sampling volume and a single quadrupole detector, on-line DBS allowed the analyses of these three compounds over their therapeutic concentrations from 50 to 500 ng/mL for imipramine and verapamil and from 100 to 1000 ng/mL for saquinavir. Moreover, the method showed good repeatability with relative standard deviation (RSD) lower than 15% based on two levels of concentration (low and high). Function responses were found to be linear over the therapeutic concentration for each compound and were used to determine the concentrations of real patient samples for saquinavir. Comparison of the founded values with those of a validated method used routinely in a reference laboratory showed a good correlation between the two methods. Moreover, good selectivity was observed ensuring that no endogenous or chemical components interfered with the quantitation of the analytes. This work demonstrates the feasibility and applicability of the on-line DBS procedure for bioanalysis.
Resumo:
Summary : Four distinct olfactory subsystems compose the mouse olfactory system, the main olfactory epithelium (MOE), the septal organ of Masera (SO), the vomeronasal organ (VNO) and the Grueneberg ganglion (GG). They are implicated in the sensory modalities of the animal and they evolved to analyse and discriminate molecules carrying chemical messages, such as odorants and pheromones. In this thesis, the VNO, principally implicated in pheromonal communications as well as the GG, which had no function attributed until this work, were investigated from their morphology to their physiological functions, using an array of biochemical and physiological methods. First, the roles of a particular protein, the CNGA4 ion channel, were investigated in the VNO. In the MOE, CNGA4 is expressed as a modulatory channel subunit implicated in odour discrimination and adaptation. Interestingly, this calcium channel is the unique member of the cyclic nucleotide-gated (CNG) family to be expressed in the VNO and up to this work its functions remained unknown. Using a combination of transgenic and knockout mice, as well as histological and physiological approaches, we have characterized CNGA4 expression in the VNO. A strong expression in immature neurons was found as well as in the microvilli of mature neurons (putative site of chemodetection). Interestingly and confirming its dual localisation, the genetic invalidation of the CNGA4 channel has, as consequences, a strong impairment in vomeronasal maturation as well as deficit in pheromone sensing. Thus the CNGA4 channel appears to be a multifunctional protein in the mouse VNO playing essential role(s) in this organ. During the second part of the work, the morphology of the most recently described olfactory subsystem, the Grueneberg ganglion, was investigated in detail. Interestingly we found that glial cells and ciliated neurons compose this olfactory ganglion. This particular morphological aspect was similar to the olfactory AWC neurons from C. elegans which was used for further comparisons. Thus as for AWC neurons, we found that GG neurons are sensitive to temperature changes and are able to detect highly volatile molecules. Indeed, the presence of alarm pheromones (APs) secreted by stressed mice, elicit strong cellular responses, as well as a GG dependent behavioural changes. Investigations on the signaling elements present in GG neurons revealed that, as for AWC neurons, or pGC-D expressing neurons from the MOE, proteins participating in a cGMP pathway were found in GG neurons such as pGC-G and CNGA3 channels. These two proteins might be implicated in chemosensing as well as in thermosensing, two apparent properties of this organ. In this thesis, the multisensory modalities of two mouse olfactory subsystems were described and are related to a high degree of complexity required for the animal to sense its environment
Resumo:
Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.
Resumo:
The metabolic syndrome considerably increases the risk of cardiovascular and renal events in hypertension. It has been associated with a wide range of classical and new cardiovascular risk factors as well as with early signs of subclinical cardiovascular and renal damage. Obesity and insulin resistance, beside a constellation of independent factors, which include molecules of hepatic, vascular, and immunologic origin with proinflammatory properties, have been implicated in the pathogenesis. The close relationships among the different components of the syndrome and their associated disturbances make it difficult to understand what the underlying causes and consequences are. At each of these key points, insulin resistance and obesity/proinflammatory molecules, interaction of demographics, lifestyle, genetic factors, and environmental fetal programming results in the final phenotype. High prevalence of end-organ damage and poor prognosis has been demonstrated in a large number of cross-sectional and a few number of prospective studies. The objective of treatment is both to reduce the high risk of a cardiovascular or a renal event and to prevent the much greater chance that metabolic syndrome patients have to develop type 2 diabetes or hypertension. Treatment consists in the opposition to the underlying mechanisms of the metabolic syndrome, adopting lifestyle interventions that effectively reduce visceral obesity with or without the use of drugs that oppose the development of insulin resistance or body weight gain. Treatment of the individual components of the syndrome is also necessary. Concerning blood pressure control, it should be based on lifestyle changes, diet, and physical exercise, which allows for weight reduction and improves muscular blood flow. When antihypertensive drugs are necessary, angiotensin-converting enzyme inhibitors, angiotensin II-AT1 receptor blockers, or even calcium channel blockers are preferable over diuretics and classical beta-blockers in monotherapy, if no compelling indications are present for its use. If a combination of drugs is required, low-dose diuretics can be used. A combination of thiazide diuretics and beta-blockers should be avoided.
Resumo:
Perturbations of the trans-sarcolemmal and sarcoplasmic Ca2+ transport contribute to the abnormal myocardial activity provoked by anoxia and reoxygenation. Whether Ca2+ pools of the extracellular compartment and sarcoplasmic reticulum (SR) are involved to the same extent in the dysfunction of the anoxic-reoxygenated immature heart has not been investigated. Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to repeated anoxia (1 min) followed by reoxygenation (5 min). Heart rate, atrioventricular propagation velocity, ventricular shortening, velocities of contraction and relaxation, and incidence of arrhythmias were studied, recorded continuously. Addition of verapamil (10 nM), which blocks selectively sarcolemmal L-type Ca2+ channels, was expected to protect against excessive entry of extracellular Ca2+, whereas addition of ryanodine (10 nM), which opens the SR Ca2+ release channel, was expected to increase cytosolic Ca2+ concentration. Verapamil (a) had no dromotropic effect by contrast to adult heart, (b) attenuated ventricular contracture induced by repeated anoxia, (c) shortened cardioplegia induced by reoxygenation, and (d) had remarkable antiarrhythmic properties during reoxygenation specially. On the other hand, ryanodine potentiated markedly arrhythmias both during anoxia and at reoxygenation. Thus despite its immaturity, the SR seems to be functional early in the developing chick heart and involved in the reversible dysfunction induced by anoxia-reoxygenation. Moreover, Ca2+ entry through L-type channels appears to worsen arrhythmias especially during reoxygenation. These findings show that the Ca2+-handling systems involved in irregular activity in immature heart, such as the embryonic chick heart, may differ from those in the adult.
Resumo:
OBJECTIVES: Despite a broad and efficient pharmacological antihypertensive armamentarium, blood pressure (BP) control is suboptimal and heterogeneous throughout Europe. Recent representative data from Switzerland are limited. The goal of the present survey was therefore to assess the actual control rate of high BP in Switzerland in accordance with current guidelines. The influence of risk factors, target organ damage and medication on BP levels and control was also evaluated.METHODS : A cross-sectional visit-based survey of ambulatory hypertensive patients was performed in 2009 in Switzerland. 281 randomly selected physicians provided data on 5 consecutive hypertensive patients attending their practices for BP follow-up. Data were anonymously collected on demographics, comorbidities and current medication, and BP was recorded. Subsequent modification of pharmacological antihypertensive therapy was assessed.RESULTS : Data from 1376 patients were available. Mean age was 65 +/- 12 years, 53.9% were male subjects. 26.4% had complicated hypertension. Overall, BP control (<140/90 mm Hg for uncomplicated and <130/80 mm Hg for complicated hypertension) was achieved in 48.9%. Compared to patients with complicated hypertension, BP control was better in patients with uncomplicated hypertension (59.4% vs. 19.2%, p < 0.001). As a monotherapy the most prescribed drug class were angiotensin receptor blockers (ARB, 41%), followed by angiotensin converting enzyme (ACE) inhibitors (21.5%), betablockers (20.8%) and calcium channel blockers (CCB, 10.8%). The most prescribed drug combinations were ARB + diuretic (30.1%) and ACE inhibitors + diuretic (15.3%). 46% were receiving a fixed drug combination. In only 32.7% of patients with uncontrolled hypertension was a change in drug therapy made.CONCLUSION : This representative survey on treated adult hypertensive patients shows that, compared to earlier reports, the control rate of hypertension has improved in Switzerland for uncomplicated but not for complicated, particularly diabetes-associated hypertension. ARBs and ACE inhibitors are the most prescribed antihypertensive drugs for monotherapy, whereas diuretics and ARBs were the most used for combination therapy.
Resumo:
Pharmacological treatment of hypertension is effective in preventing cardiovascular and renal complications. Calcium antagonists and blockers of the renin-angiotensin system are widely used today to initiate antihypertensive therapy but, when given as monotherapy, do not suffice in most patients to normalize blood pressure. Combining the two types of agents considerably increases the antihypertensive efficacy, but not at the expense of a deterioration of tolerability. This is exemplified by the experience accumulated with the recently developed fixed dose combination containing the AT(1)-receptor blocker valsartan (160 mg) and the dihydropyridine amlodipine (5 or 10 mg). In a randomized trial, an 8-week treatment normalized blood pressure (<140/90 mmHg) within 8 weeks in a large fraction of hypertensive patients (78.4% and 85.2% using the 5/160 [n = 371] and 10/160 mg [n = 377] dosage, respectively). Like all AT(1)-receptor blockers valsartan has a placebo-like tolerability. Valsartan prevents to a large extent the occurrence amlodipine-induced peripheral edema. Both amlodipine and valsartan have beneficial effects on cardiovascular morbidity and mortality, as well as protective effects on renal function. The co-administration of these two agents is therefore very attractive, as it enables a rapid and sustained blood pressure control in hypertensive patients. The availability of a fixed-dose combination based on amlodipine and valsartan is expected therefore to facilitate the management of hypertension, to improve long-term adherence with antihypertensive therapy and, ultimately, to have a positive impact on cardiovascular and renal outcomes.
Resumo:
Today two largely new approaches are available for the treatment of clinical hypertension. First, captopril, an orally active angiotensin converting enzyme inhibitor, makes possible chronic blockade of the renin-angiotensin system. This compound, given alone or in combination with a diuretic, normalizes the blood pressure of most hypertensive patients. Unfortunately, because captopril may induce serious adverse effects the use of this inhibitor must be restricted to patients with high blood pressure refractory to conventional antihypertensive drugs. Second, compounds such as verapamil and nifedipine are capable of producing a marked vasodilating effect by inhibiting the entry of calcium into the vascular smooth muscle cells. However, the role of calcium channel blockers in the treatment of hypertensive disease awaits more precise definition.
Resumo:
OBJECTIVES: Basic calcium phosphate (BCP) crystal and interleukin 6 (IL-6) have been implicated in osteoarthritis (OA). We hypothesise that these two factors may be linked in a reciprocal amplification loop which leads to OA. METHODS: Primary murine chondrocytes and human cartilage explants were incubated with hydroxyapatite (HA) crystals, a form of BCP, and the modulation of cytokines and matrix-degrading enzymes assayed. The ability of IL-6 to stimulate chondrocyte calcification was assessed in vitro. The mechanisms underlying the effects of HA on chondrocytes were investigated using chemical inhibitors, and the pathways mediating IL-6-induced calcification characterised by quantifying the expression of genes involved in chondrocyte mineralisation. The role of calcification in vivo was studied in the meniscectomy model of murine OA (MNX), and the link between IL-6 and cartilage degradation investigated by histology. RESULTS: In chondrocytes, BCP crystals stimulated IL-6 secretion, further amplified in an autocrine loop, through signalling pathways involving Syk and PI3 kinases, Jak2 and Stat3 molecules. Exogenous IL-6 promoted calcium-containing crystal formation and upregulation of genes involved in calcification: the pyrophosphate channel Ank, the calcium channel Annexin5 and the sodium/phosphate cotransporter Pit-1. Treatment of chondrocytes with IL-6 inhibitors significantly inhibited IL-6-induced crystal formation. In meniscectomised mice, increasing deposits of BCP crystals were observed around the joint and correlated with cartilage degradation and IL-6 expression. Finally, BCP crystals induced proteoglycan loss and IL-6 expression in human cartilage explants, which were reduced by an IL-6 inhibitor. CONCLUSIONS: BCP crystals and IL-6 form a positive feedback loop leading to OA. Targeting calcium-containing crystal formation and/or IL-6 are promising therapeutic strategies in OA.
Resumo:
T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1) and a1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.
Resumo:
Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM) reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM) but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM) and isoproterenol (20 nM) administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM), supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.