916 resultados para Calcium carbide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type II diabetes mellitus is a chronic metabolic disorder that can lead to serious cardiovascular, renal, neurologic, and retinal complications. While several drugs are currently prescribed to treat type II diabetes, their efficacy is limited by mechanism-related side effects (weight gain, hypoglycemia, gastrointestinal distress), inadequate efficacy for use as monotherapy, and the development of tolerance to the agents. Consequently, combination therapies are frequently employed to effectively regulate blood glucose levels. We have focused on the mitochondrial sodium-calcium exchanger (mNCE) as a novel target for diabetes drug discovery. We have proposed that inhibition of the mNCE can be used to regulate calcium flux across the mitochondrial membrane, thereby enhancing mitochondrial oxidative metabolism, which in turn enhances glucose-stimulated insulin secretion (GSIS) in the pancreatic beta-cell. In this paper, we report the facile synthesis of benzothiazepines and derivatives by S-alkylation using 2-aminobenzhydrols. The syntheses of other bicyclic analogues based on benzothiazepine, benzothiazecine, benzodiazecine, and benzodiazepine templates are also described. These compounds have been evaluated for their inhibition of mNCE activity, and the results from the structure-activity relationship (SAR) studies are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical chemistry of "aluminothermic" reduction of calcium oxide in vacuum is analyzed. Basic thermodynamic data required for the analysis have been generated by a variety of experiments. These include activity measurements in liquid AI-Ca alloys and determination of the Gibbs energies of formation of calcium aluminates. These data have been correlated with phase relations in the Ca-AI-0 system at 1373 K. The various stages of reduction, the end products and the corresponding equilibrium partial pressures of calcium have been established from thermodynamic considerations. In principle, the recovery of calcium can be improved by reducing the pressure in the reactor. However,, the cost of a high vacuum system and the enhanced time for reduction needed to achieve higher yields makes such a practice uneconomic. Aluminum contamination of calcium also increases at low pressures. The best compromise is to carry the reduction up to the stage where 3CaO-Al,O, is formed as the product. This corresponds to an equilibrium calcium partial pressure of 31.3 Pa at 1373 K and 91.6 Pa at 1460 K. Calcium can be extracted at this pressure using mechanical pumps in approximately 8 to 15 hr, depending on the size and the fill ratio of the retort and porosity of the charge briquettes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explored in this study is an electronically mediated reaction (EMR) route for the production of niobium powder using calcium as a reductant for niobium oxide (Nb2O5). Feed material, Nb2O5, and reductant calcium alloy containing aluminum and nickel were charged into electronically isolated locations in a molten salt (e.g. CaCl2) at 1173 K. The current flow through an external path between the feed and reductant locations was monitored. A current approximately 0.4 A was measured during the reaction in the external circuit connecting cathode and anode location. Niobium powder with low aluminum and nickel content was obtained although liquid Ca–Al–Ni alloy was used as the reductant. This clearly demonstrates that niobium metal powder can be produced by an electronically mediated reaction (EMR), without direct physical contact between feed (Nb2O5) and reductant (calcium). Mechanism of calciothermic reduction of Nb2O5 in the molten salt is discussed using an isothermal chemical potential diagram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potentials of CaO in two-phase fields (TiO2 + CaTiO3), (CaTiO3 + Ca4Ti3O10), and (Ca4Ti3O10 + Ca3Ti2O7) of the pseudo-binary system (CaO + TiO2) have been measured in the temperature range (900 to 1250) K, relative to pure CaO as the reference state, using solid-state galvanic cells incorporating single crystal CaF2 as the solid electrolyte. The cells were operated under pure oxygen at ambient pressure. The standard Gibbs free energies of formation of calcium titanates, CaTiO3, Ca4Ti3O10, and Ca3Ti2O7, from their component binary oxides were derived from the reversible e.m.f.s. The results can be summarised by the following equations: CaO(solid) + TiO2(solid) → CaTiO3(solid), ΔG° ± 85/(J · mol−1) = −80,140 − 6.302(T/K); 4CaO(solid) + 3TiO2(solid) → Ca4Ti3O10(solid), ΔG° ± 275/(J · mol−1) = −243,473 − 25.758(T/K); 3CaO(solid) + 2TiO2(solid) → Ca3Ti2O7(solid), ΔG° ± 185/(J · mol−1) = −164,217 − 16.838(T/K). The reference state for solid TiO2 is the rutile form. The results of this study are in good agreement with thermodynamic data for CaTiO3 reported in the literature. For Ca4Ti3O10 Gibbs free energy of formation obtained in this study differs significantly from that reported by Taylor and Schmalzried at T = 873 K. For Ca3Ti2O7 experimental measurements are not available in the literature for direct comparison with the results obtained in this study. Nevertheless, the standard entropy for Ca3Ti2O7 at T = 298.15 K estimated from the results of this study using the Neumann–Koop rule is in fair agreement with the value obtained from low-temperature heat capacity measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical oxidation of sodium borohydride (NaBH(4)) and ammonia borane (NH(3)BH(3)) (AB) have been studied on titanium carbide electrode. The oxidation is followed by using cyclic voltammetry, chronoamperometry and polarization measurements. A fuel cell with TiC as anode and 40 wt% Pt/C as cathode is constructed and the polarization behaviour is studied with NaBH(4) as anodic fuel and hydrogen peroxide as catholyte. A maximum power density of 65 mW cm(-2) at a load current density of 83 mA cm(-2) is obtained at 343 K in the case of borhydride-based fuel cell and a value of 85 mW cm(-2) at 105 mA cm(-2) is obtained in the case of AB-based fuel cell at 353 K. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanochemistry of calcium remains unexplored, which is largely due to the inaccessibility of calcium nanoparticles in an easy to handle form by conventional methods of synthesis as well as its highly reactive and pyrophoric nature. The synthesis of colloidal Ca nanoparticles by the solvated metal atom dispersion (SMAD) method is described. The as-prepared Ca-THF nanoparticles, which are polydisperse, undergo digestive ripening in the presence of a capping agent, hexadecyl amine (HDA) to afford highly monodisperse colloids consisting of 2-3 nm sized Ca-HDA nanoparticles. These are quite stable towards precipitation for long periods of time, thereby providing access to the study of the nanochemistry of Ca. Particles synthesized in this manner were characterized by UV-visible spectroscopy, high resolution electron microscopy, and powder X-ray diffraction methods. Under an electron beam, two adjacent Ca nanoparticles undergo coalescence to form a larger particle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A bacterium Bacillus polymyxa was found to be capable of selective removal of calcium and iron from bauxite. The bioleached residue was found to be enriched in its alumina content with insignificant amounts of iron and calcium as impurities. The developed bio- process was found to be capable of producing a bauxite product which meets the specifica- tions as a raw material for the manufacture of alumina based ceramics and refractories. The role of bacterial cells and metabolic products in the selective dissolution of calcium (present as calcite) and iron (present as hematite and goethite) from bauxite was assessed and possi- ble mechanisms illustrated. The effect of different parameters such as sucrose concentra- tion, pH, pulp density and time on selective biodissolution was studied. It was observed that periodic decantation and replenishment of the leach medium was beneficial in improving the dissolution kinetics. Calcium removal involves chelation with bacterial exopolysaccha- tides and acidolysis by organic acid generation. Hematite could be solubilized through a reductive dissolution mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum carbide (MoC) and tungsten carbide (WC) are synthesized by direct carbonization method. PtRu catalysts supported on MoC, WC, and Vulcan XC-72R are prepared, and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy in conjunction with electrochemistry. Electrochemical activities for the catalysts towards methanol electro-oxidation are studied by cyclic voltammetry. All the electro-catalysts are subjected to accelerated durability test (ADT). The electrochemical activity of carbide-supported electro-catalysts towards methanol electro-oxidation is found to be higher than carbon-supported catalysts before and after ADT. The study suggests that PtRu/MoC and PtRu/WC catalysts are more durable than PtRu/C. Direct methanol fuel cells (DMFCs) with PtRu/MoC and PtRu/WC anodes also exhibit higher performance than the DMFC with PtRu/C anode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaxCu3Ti4O12 (x=0.90, 0.97, 1.0, 1.1 and 1.15) polycrystalline powders with variation in calcium content were prepared via the oxalate precursor route. The structural, morphological and dielectric properties of the ceramics fabricated using these powders were studied using X-ray diffraction, scanning electron microscope along with energy dispersive X-ray analysis, transmission electron microscopy, electron spin resonance (ESR) spectroscopy and impedance analyzer. The X-ray diffraction patterns obtained for the x = 0.97, 1.0 and 1.1 powdered ceramics could be indexed to a body-centered cubic perovskite related structure associated with the space group Im3. The ESR studies confirmed the absence of oxygen vacancies in the ceramics that were prepared using the oxalate precursor route. The dielectric properties of these suggest that the calcium deficient sample (x = 0.97) has a reduced dielectric loss while retaining the high dielectric constant which is of significant industrial relevance. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium-dependent protein kinases (CPKs) constitute a unique family of kinases involved in many physiological responses in plants. Biochemical and kinetic properties of a recombinant Swainsona canescens calcium-dependent protein kinase (ScCPK1) were examined in this study. The optimum pH and temperature for activity were pH 7.5 and 37 degrees C, respectively. Substrate phosphorylation activity of ScCPK1 was calmodulin (CaM) independent. Yet CaM antagonists, W7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulphonamide] and calmidazolium inhibited the activity with IC50 values of 750 nM and 350 pM, respectively. Both serine and threonine residues were found to be phosphorylated in auto-phosphorylated ScCPK1 and in histone III-S phosphorylated by ScCPK1. The Ca2+] for half maximal activity (K-0.5) was found to be 0.4 mu M for ScCPK1 with histone III-S as substrate. Kinetic analysis showed that Km of ScCPK1 for histone III-S was 4.8 mu M. These data suggest that ScCPK1 is a functional Ser/Thr kinase, regulated by calcium, and may have a role in Ca2+-mediated signaling in S. canescens. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium carbide (TiC) is an electrically conducting material with favorable electrochemical properties. In the present studies, carbon-doped TiO2 (C-TiO2) has been synthesized from TiC particles, as well as TiC films coated on stainless steel substrate via thermal annealing under various conditions. Several C-TiO2 substrates are synthesized by varying experimental, conditions and characterized by UV-visible spectroscopy, photoluminescence, X-ray diffraction and X-ray photoelectron spectroscopic techniques. C-TiO2 in the dry state (in powder form as well as in film form) is subsequently used as a substrate for enhancing Raman signals corresponding to 4-mercaptobenzoic acid and 4-nitrothiophenol by utilizing chemical enhancement based on charge-transfer interactions. Carbon, a nonmetal dopant in TiO2, improves the intensities of Raman signals, compared, to undoped TiO2. Significant dependence of Raman intensity on carbon doping is observed. Ameliorated performance obtained using C-TiO2 is attributed to the presence of surface defects that originate due to carbon as a dopant, which, in turn,, triggers charge transfer between TiO2 and analyte. The C-TiO2 substrates are subsequently regenerated for repetitive use by illuminating an analyte-adsorbed substrate with visible light for a period of 5 h.