445 resultados para CU2
Resumo:
A Resoluo CONAMA N 430/2011 exige a utilizao de dois bioensaios (dois nveis trficos) para avaliao ecotoxicolgica de efluentes, mas a seleo ao acaso de bioensaios pode permitir lanamentos txicos. A sensibilidade dos bioindicadores ir depender da substncia txica avaliada. Assim, baterias de bioensaios sensveis devem ser estabelecidas s classes de contaminantes. Na literatura no h estudos que indiquem uma bateria de bioensaios ecotoxicolgicos sensveis para avaliao de efluentes contendo principalmente metais. Esse trabalho teve como objetivo selecionar uma bateria de bioensaios ecotoxicolgicos que conjuntamente detectem toxicidade ao maior nmero de metais isolados e em misturas e que sejam realizados no menor tempo indicado pelas normas de padronizao. Foram avaliadas as sensibilidades de seis bioensaios, incluindo trs nveis trficos (produtores, algas: Pseudokirchneriella subcapitata e Chlorella vulgaris; consumidores primrios, cladceros: Daphnia similis e Ceriodaphnia dubia; consumidores secundrios, peixes: Poecilia reticulata e Danio rerio), a 10 espcies metlicas individuais (Ag+, Cd2+, Cu+, Cu2+, Cr3+, Cr6+, Pb2+, Ni2+, Zn2+ e Hg2+) e a efluentes reais (siderrgicos) e simulados em laboratoriais (baseado nos limites mximos permitidos para descarte). Os bioensaios com peixes foram os menos sensveis, D. rerio no detectou toxicidade em nenhum dos efluentes testados. P. subcapitata foi um bom bioindicador de toxicidade de Cr3+ e D. similis foi o organismo mais sensvel a Hg2+. O uso combinado do bioensaio crnico de 72h com C. vulgaris e do bioensaio agudo de 48h com C. dubia garantiu a deteco das menores concentraes dos metais tanto individualmente quanto em efluentes reais e simulados. Apesar de P. subcapitata ser um bom bioindicador da toxicidade de Cr3+, a interao dos metais em misturas tornou C. vulgaris igualmente sensvel. Da mesma forma, apesar de D. similis ter sido mais sensvel ao Hg2+, o efeito da toxicidade dos efluentes com maiores teores de Hg2+ foi detectado por C. dubia
Resumo:
Wolffia ;;;;;;W. globosa mat K RAPD W. globosa ;Monpterus albus Zuiew GSTs maGST 1. Wolffia Wolffia Wolffia Wolffia subgroup //W. globosaW. neglecta mat K Wolffia 2. Wolffia RAPD ;MVSP, Popgene Ntsys Wolffia 3. W. globosa W. globosa W. globosa ;4.19 ;S;W. globosa pH ;IAAGA6-BA EDDHA-Fe EDTA W. globosa ;W. globosa 4. W. globosa W. globosa ;; 5. Cr3+CDNB WolffiaSpirodela Lemna Wolffia Spirodela Lemna Cr3+Wolffia 800GB( 80mg/L)Spirodela Lemna 10mg/L;20mg/L;W. globosa W. globosa GSTs Cu2+Cd2+CDNB NBD-Cl 6. Monpterus albus Zuiew GSTs GSTs BiomarkerM. albus GSTs GSH 207 maGST SDS-PAGE MALDI-TOF/MS MaGST 52kDa26 kDamaGST CDNB 13.07 0.37 ;NBD-Cl 5.54 ;ECA4-NPA GSH CDNB Km Vmax 0.32 mM 16.19 ;CDNB GSH Km Vmax 0.44 mM 28.83 maGST pH pH7.0-7.5 pH6.5 pH8.5 65%72%;45305580%60
Resumo:
(Agrobacterium rhizogenes)16011000150015834A4(Artemisia annua L.)pRi1601pRi15834pRiA4pRi1601pRi15834;;(Gtowth RatioGR)(Number of Side RootsNSR81601-L-1, 1601-L-2, 1601-L-3, 1601-L-4, 15834-L-1, 1601-P-I, 16 01-P-215834-L-2Southern160l-1-11801-L-2, 1601-L-31601-L-41601-P-11601-P-28QHS(16/8hrs)2516 01-L-11601-L-21601-L-31601-L-41601-P-l1601-P-216 01-L-3160l-L-1;1601-L-1QHS1. 048%1601-1-3QHS160Z-L-315834 -L-12583:1-L-2l000mLMS3000mL1601-L -315834-L-115834-L-2ll0rlpmHairy Root BalisHRBHRBQHsHpLCQHS MSQHS lKN0318.7910-3M1601- L-114. 8410-3MQHSNH-4N0-310.93-12. 49103M1601-L-10-20.6210-3MQHS20. 62lO-3MQHSNH-4+N0-3-0. 37-0. 4-0.52:10.52 - 0.58:1QHS 2H-2P0-4-2.49810-3M0-2. 498l0-3MH2P4 -0-1.249lO-3MQHS1.24910-3MQHS 316 01-L-1Ca-2+0.198- 0.76610-3M0-3.69510-3MCa-2+QHSCa-2+3.695l0-3M 4Mg-2+0. 14210-3M-7.506l0-3MHPLCUVQHSMg-2+QHS 5Fe-2+0. 25 -1010-3M16 01- L-1QHS 616 01- L-3KI2.5ppmKIQHS 7H2BO3l601-L-lHPLCQHSH3BO3100ppm400ppmQHS1.69mg/g1.80mg/g(DW) 8Cu-2+1601-L-31601-L-3Cu-2+1.00ppm0 -1.00ppmCu+QHSCu2+0.05ppmQHS 1601-L-l2535 1601-L-31601-L-1 (1) (2)530- 60glL50glL60g/L30gL (3)1560g/L3060-90g/L30-40g/L (4)51530g/L60g/L90g/L3060g/L90g/L (5)/ pHQHSpH5.O-6.51601-L-15.OpH5.81601-1-1QHSpH4.5-5.2. pH7.OpHl0.OpH(24- 48hrs)pl:l5.86.47.0pH4. 5-5.2pH5.8QHS QHSN6DCRLitvay1601-L-1WSWhiteB5DCRQHS L7(3-)QHSMg2+Fe2+Mn-2+NH4NO3KN03 ,KI,Ca-2+NH4N03KNOsMg2+Ca2+QHS TLCQHSQHS QHSQHSHPlQHS2 QHSQHS3QHS4QHSQHSQIS51601-L-115834-L-1
Resumo:
(Allium sativumL)(Cynodon dactylon) (Metallothioneins LikeMTs Like)Y-(Glu-Cys) n-Gly(PhytochelatinsPCs)MT LikePCs RACE(MT-Like)cDNA(GenBank Accession No.AY050510)PCRSoutheLrn BlotMT Like cDNAMT Like cDNA73121 6.4%89%N-c-3Cys-Xaa-CysType-1Cys-Xaa-CysMT LikeMT LikeMT LikeCu2+Cd2+MT LikeMT Like Y-AlaPCsGSHy(PCsphytochelatin synthasePCS)PCs345bpcDNAcDNAcDNA(GenBank Accession No.AF384110)(MT LikePCS) M379/8
Resumo:
;19;30 25pH5.35.8O,l%-0.30% Cu2+Mg2+Zn2+K+NH;50gLIAAKT Cu2+
Resumo:
, EDTA 1 391 KUg - 1 ,,1 2 5 mmolL - 1Ca2 + Mg2 + Mn2 + ,1 2 mmolL - 1Zn2 + Co2 + ,5 mmolL - 1Zn2 + Co2 + ,Cu2 + 1 2 5 mmolL - 1 , EDTA , EDTA
Resumo:
Granular reactive materials have higher permeability and are therefore desirable for in situ groundwater pollution control. Three granular bentonites were prepared: an Al-pillared bentonite (PBg), an organo-bentonite (OBg) using a quaternary ammonium cation (QAC), and an inorgano-organo-bentonite (IOBg), using both the pillaring agent and the QAC. Powdered IOB (IOBp) was also prepared to test the effect of particle size. The modified bentonites were characterised with X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analysis (TGA) and uniaxial compression tests. The d-spacing increased only with QAC intercalation. The Young's modulus of IOBg was twice as high as OBg. Batch adsorption tests were performed with aqueous multimetal solutions of Pb2+, Cu2+, Cd2+, Zn2+ and Ni2+ ions, with liquid dodecane and with aqueous dodecane solutions. Metal adsorption fit the Langmuir isotherm. Adsorption occurred within 30min for PBg, while the granular organo-bentonite needed at least 12h to reach equilibrium. IOBp had the maximum adsorption capacity at higher metal concentration and lower adsorbent content (Cu2+: 2.2, Ni2+: 1.7, Zn2+: 1.4, Cd2+: 0.9 and Pb2+: 0.7 all in mmolg-1). The dual pillaring of the QAC and Al hydroxide increased the adsorption. The adsorption of liquid dodecane was in the order IOBg>OBg>PBg (3.2>2.7>1.7mmolg-1). Therefore IOBg has potential for the removal of toxic compounds found in soil, groundwater, storm water and wastewater. 2012 Elsevier B.V.
Resumo:
Cu2+,Cu2+:>>>>Cu-SO4.5H2O(102μg/LCu2+):,;;,,,,Cu2+;,
Resumo:
Cu2+(0.01,0.1,1,10,50,100,200mg/L)(Chlorococcumsp.).,Cu2+.BG11,0.011mg/LCu2+,,,;(10200mg/LCu2+),,,1.Cu2+(0.01,0.1mg
Resumo:
Cd2 + Cu2 + BF5(TetrahymenathermophilaBF5) , :Cd2 + (0 0 .4mgL-1)Cu2 + (0 10mgL-1) ,Cd2 + (0 .8 3.2mgL-1)Cu2 + (2 0 2 0 0mgL-1) ;Cd2 + Cu2 + IC50 2 .0 4mg/L15 5 .5mg/L ;
Resumo:
Cu2 + ,Cu2 + Kinneret ,Cu2 + Kinneret , ,Cu2 + , ,Cu2 + Kinneret , 2 0
Resumo:
, , , 5d ,Cu2 + , 54KDa ;Zn2 + , 94KDa ,67KDa 40KDa
Resumo:
Palm oil has been the world's main source of oil and fats since 2004, producing over 45 million tonnes in 2009. Malaysia alone has over 45 million hectares planted with oil palm and, based on common practice, ~300 palm fronds are pruned per hectare per year. This agricultural waste is currently either being used as roughage feed or, more frequently, being left between rows of palm trees to prevent soil erosion, or for nutrient recycling purposes. This paper proposes an alternative use for palm frond as a source of biochar. A traditional method commonly use by gardeners in Malaysia to improve soil fertility was used to produce the biochar. A shallow earth pit was dug in the ground for the carbonisation process. The process is described and the impact of carbonisation on the earth wall is analysed and presented. The process was later re-assessed by using TGA-FTIR. Most of the hemicelluloses had fully disintegrated, but the depolymerisation of the cellulose was still incomplete at the carbonisation temperature. Most of the lignin aromatic structure was still present in the biochar. The carbonisation process was repeated in the laboratory and biochar was characterised by using BET, SEM and FTIR. An adsorption isotherm study was conducted and the experimental data were fitted to the Langmuir model. The model predicted Pb2+ adsorption rates of 833 mg/g, Cu2+ 414 mg/g, Ni2+ 130 mg/g and Zn2+ 197 mg/g. Copyright The Royal Society of Edinburgh 2012.