966 resultados para CTL EPITOPES
Resumo:
Monoclonal antibodies specific for phase 1 ("i" antigen), phase 2 ("1,2" antigen) and common epitopes of the flagellins of Salmonella enterica serotype Typhimurium were raised. Having confirmed their specificity, the monoclonal antibodies were used to develop semi-quantitative ELISAs in order to assess the relative expression of the two phases by strains of Typhimurium. The majority of Typhimurium strains representative of a wide cross-section of definitive types from animal and environmental sources preferentially expressed phase 1 antigen in vitro. DT40 strains were unique in expressing phase 2 preferentially. The ratio of phase 1 to phase 2 expressed by strains tended to be constant for any one strain when strains were grown on a number of conventional laboratory media. However, the ratio of phases was shown to be modulated by incubation at 42 degreesC and buffering media at pH values, notably 4.5, other than neutral. Selenite broth and Rambach media repressed flagellation. Crown Copyright (C) 2001 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Isolated from the mycelium, of Scedosporium prolificans were complex glycoproteins (RMP-Sp), with three structurally related components (HPSEC). RMP-Sp contained 35% protein and 62% carbohydrate with Rha, Ara, Man, Gal, Glc, and GlcNH(2) in a 18:1:24:8:6:5 molar ratio. Methylation analysis showed mainly nonreducing end- of Galp (13%), nonreducing end- (9%),2-O-(13%), and 3-O-subst. Rhap (7%), nonreducing end-(11%), 2-O-(10%), 3-O-(14%), and 2,6-di-O-subst. Manp units (13%). Mild reductive P-elimination of RMP-Sp gave alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-Manp-(1-->2)-D-Man-ol, with Man-ol substituted at O-6 with beta-D-Galp units, a related pentasaccharide lacking beta-D-Galp units, and beta-D-Galp-(1-->6)-[alpha-D-Manp-(1-->2)]-D-Man-ol in a 16:3:1 w/w ratio. Traces of Man-ol and Rha-ol were detected. ESI-MS showed HexHex-o1 and HCX(3-6)Hex-ol components. Three rhamnosyl units were peeled off successively from the penta- and hexasaccharide by ESI-MS-MS. The carbohydrate epitopes of RMP-Sp differ from those of the glycoprotein of Pseudallescheria boydii, a related opportunistic pathogen. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We investigated the possibility that Chagas' patients develop an autoimmune response to human UsnRNPs (small nuclear ribonucleoprotein) or Sm epitopes. Using purified human UsnRNPs, we detected anti-human UsnRNPs antibodies in sera from patients suffering from Chagas' disease. The antibodies it-ere also detected using peptide enzyme-linked immunosorbent assays containing the Sm-motif 1 domain. The latter technique showed that 61% (31/51) of the Chagas' patients' sera contained antibodies against Sm-motif I. The detection of anti-UsnRNPs autoantibodies in Chagas patients' sera strongly encourages further studies using animal models to determine how these autoantibodies appear.
Resumo:
Different ethnic groups with a high human leukocyte antigen (HLA)-A11 prevalence have been shown to experience a high rate of Epstein-Barr virus (EBV) infection, EBV-associated malignancies, and Epstein-Barr nuclear antigen (EBNA)-4 mutations. The epitopes 393-408 and 416-424 of EBNA-4 are major antigenic epitopes that elicit an HLA-A11 cytotoxic T lymphocyte (CTL) response to EBV infection. Mutations selectively involving one or more nucleotide residues in these epitopes affect the antigenicity of EBNA-4, because the mutant EBV strains are not recognized by the HLA-A11-restricted CTLs. To investigate these mutations in common EBV-associated malignancies occurring in different populations, we studied the mutation rate of epitopes 393-408 and 416-424 of EBNA-4 in 25 cases of EBV-associated Hodgkin's disease (HD), nine cases of AIDS-related non-Hodgkin's lymphoma, and 37 cases of EBV-associated gastric carcinoma (GC) from the United States, Brazil, and Japan. We found one or more mutations in these two epitopes in 50% (6/12) of United States HD, 15% (2/13) of Brazilian HD, 50% (6/12) United States GC and 28% (7/25) Japanese GC, and 22% (2/9) of United States AIDS-lymphoma. Similar mutations were found in 30% (3/10) of United States reactive, 0% (0/6) of Brazilian reactive, and 25% (2/8) Japanese reactive tissues. The most frequent amino acid substitutions were virtually identical to those seen in previously reported isolates from EBV-associated nasopharyngeal carcinomas and Burkitt's lymphomas occurring in high prevalence HLA-A11 regions. However, only 2/28 (7%) mutations occurred in HLA-A11-positive patients. Our studies suggest that: 1) EBNA-4 mutations are a common phenomenon in EBV-associated HD, GC, and AIDS-lymphoma; 2) the mutation rate does not vary in these geographic areas and ethnic groups; 3) EBNA-4 mutations in EBV-associated United States and Brazilian HD, United States and Japanese GC, and United States AIDS lymphomas are not related to patients' HLA-A11 status.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods: Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings: Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0.04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0.06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0.04; Pol p = 0.13; Gag p = 0.89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p. 0.50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4.7 vs 5.1) but the difference was not significant (p = 0.27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0.30). Interpretation: Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
Resumo:
The direct killing of target cells by cytotoxic T lymphocytes (CTLs) plays a fundamental role in protective immunity to viral, bacterial, protozoan and fungi infections, as well as to tumor cells. In vivo cytotoxic assays take into account the interaction of target and effector cells in the context of the proper microenvironment making the analysis biologically more relevant than in vitro cytotoxic assays. Thus, the development, improvement and validation of in vivo methods are necessary in view of the importance of the results they may provide. We describe and discuss in this manuscript a method to evaluate in vivo specific cytotoxic T lymphocyte killing. We used as model system mice immunized with human recombinant replication-deficient adenovirus 5 (HAd5) containing different transgenes as the trigger of a CTL-mediated immune response. To these mice, we adoptively transferred syngeneic cells labeled with different vital fluorescent dyes. Donor cells were pulsed (target) or not (control non-target) with distinct CD8 T-cell epitopes, mixed in a 1:1 ratio and injected i.v. into immunized or non-immunized recipient mice. After 18-24h, spleen cells are collected and analysed by flow cytometry. A deviation from the 1:1 ratio of control and target cell populations indicates antigen specific lysis of target cells
Resumo:
Der Transplantat-gegen-Leukämie (GVL) Effekt als immuntherapeutisches Mittel bei der allogenen hämatopoetischen Stammzell Transplantation (HSZT) ist hauptsächlich durch Spender Lymphozyten vermittelt, welche hämatopoetische Minor-Histokompatibilitäts Antigene bzw. Leukämie-assoziierte Antigene (z. B.: PRAME, p53) erkennen. Der adoptive Transfer von Leukämie-spezifischen T-Zellen kann den GVL-Effekt, ohne ein Auftreten einer Transplantat-gegen-Wirt Erkrankung (GVHD), steigern. Unter Verwendung von HLA-A2 und human CD8 transgenen Mäusen (CD8yCyA2Kb) konnten in dieser Arbeit PRAME spezifische CD8+ zytotoxischen T-Zellen generiert werden. Diese zytotoxischen CD8+ T-Zellen zeigten in Chromfreisetzungsuntersuchungen lytische Aktivität gegen eine Vielzahl von Zelllinien, die PRAME endogen prozessieren sowie gegen das spezifische PRAME-Peptid. Des Weiteren wurden die hier generierten T-Zellen auf ihre zytotoxische Aktivität gegen akute myeloische Leukämie Blasten hin untersucht, und diese Untersuchungen zeigten AML-Reaktivität der PRAME-spezifischen sowie der als Vergleich genutzten p53- und HLA-A2-spezifischen T-Zellen. Das Potenzial der PRAME-spezifischen ZTL die GVL-Immunität in vivo zu erhöhen ohne das Vorkommen einer GVHD wurde in einem Tumor-Protektions-Model unter der Nutzung von NOD/SCIDgcnull Mäusen untersucht. Die PRA100- bzw. p53-ZTL wurden adoptiv in NOD/SCIDgcnull Rezipienten transferiert und gleichzeitig wurden die Tiere mit PRAME-, oder p53-exprimierende Tumorzelllinien inokuliert. Die Reduktion des Tumorwachstums bestätigte die Spezifität der T-Zellen auch in vivo. In weiteren in vivo Experimenten wurden NOD/SCIDgcnull Mäuse mit AML-Blasten rekonstituiert. Durch die Applikation von nur CD34 positiven Zellen aus einer AML-Probe, oder einer CD56 depletierten Probe, konnten Rekonstitutionen in 95 % aller Versuche erfolgreich beendet werden. Wurde eine Rekonstitution mittels PCR- und FACS-Analysen diagnostiziert, so folgten mehrere Applikationen der PRAME- oder p53-spezifischen ZTL. In diesen Untersuchungen konnten wir in einem therapeutischen AML-in vivo-Modell zeigen, dass die in diesen Untersuchungen generierten/verwandten ZTL in der Lage sind AML-Blasten in vivo zu bekämpfen und so die leukämische Last der Tiere im Blut sowie in der Milz auf unter 1 % zu regulieren. Der prozentuale Anteil humaner AML Zellen im Knochenmark konnte deutlich gesenkt werden (< 10 %). Zusammenfassend sind die von uns generierten PRAME-spezifischen T-Zellen in der Lage, in vitro und auch in vivo, endogen prozessiertes Protein auf Zelllinien und AML-Blasten zu erkennen und zu lysieren. Auch die p53-ZTL, welche als eine weitere Antigen-spezifische ZTL-Population in vivo getestet wurden, zeigten GVL-Effekte. Die Kenntnis von Tumor- bzw. Leukämie assoziierten Antigenen und die daraus erwachsene Möglichkeit der Generierung krankheitsspezifischer ZTL bietet die Grundlage für eine spezifische Immuntherapie maligner Erkrankungen.
Resumo:
Acute myeloid leukemia (AML) is a very aggressive cancer of the hematopoietic system. Chemotherapy and immunotherapeutical approaches including hematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) are the only curative options available. The beneficial graft-versus-leukemia (GVL) effect of cellular immunotherapy is mostly mediated by donor-derived CD8+ T lymphocytes that recognize minor histocompatibility antigens (mHags) and leukemia-associated antigens (LAAs) presented on the surface of AML blasts (Falkenburg et al. 2008; Kolb 2008). A main complication is graft-versus-host disease (GVHD) that can be induced when cytotoxic T lymphocytes (CTLs) recognize broadly expressed antigens. To reduce the risk of GVHD, specific allogeneic T-cell therapy inducing selective GVL responses could be an option (Barrett & Le Blanc 2010; Parmar et al. 2011; Smits et al. 2011). This requires efficient in vitro strategies to generate AML-reactive T cells with an early differentiation phenotype as well as vigorous effector functions and humanized mouse models to analyze the anti-leukemic potential of adoptively transferred T cells in vivo. In this study, AML-reactive CTL clones and oligoclonal T-cell lines could be reliably generated from the naive subset of healthy HLA-class I-identical donors by stimulation with primary AML blasts in mini-mixed-lymphocyte / leukemia cultures (MLLCs) in eight different patient / donor pairs. These CTLs were promising candidates for cellular immunotherapy because of their relatively early differentiation phenotype and strong proliferative and lytic capabilities. The addition of the common γ-chain cytokine IL-21 to the stimulation protocol enabled more precursors to develop into potent leukemia-reactive CTLs, presumably by its beneficial effects on cell survival and antigen-specific proliferation during the first weeks of cultures. It also strengthened the early-stage phenotype. Three long-term cultured CTLs exemplarily transferred into leukemia-engrafted immunodeficient NSG mice mediated a significant reduction of the leukemic burden after a single transfusion. These results demonstrate that CTL clones with reactivity to patient-derived AML blasts can be isolated from the naive compartment of healthy donors and show potent anti-leukemic effects in vivo. The herein described allo-MLLC approach with in vitro “programmed” naive CTL precursors independent of a HSCT setting is a valuable alternative to the conventional method of isolating in vivo primed donor CTLs out of patients after transplantation (Kloosterboer et al. 2004; Warren et al. 2010). This would make leukemia-reactive CTLs already available at the time point of HSCT, when residual leukemia disease is minimal and the chances for complete leukemia eradication are high. Furthermore, leukemia-reactive CTLs effectively expanded by this in vitro protocol can be used as screening populations to identify novel candidate LAAs and mHags for antigen-specific immunotherapy.
Resumo:
In this report, we describe a short peptide, containing a T helper- and a B-cell epitope, located in the Gag protein of the caprine arthritis encephalitis virus (CAEV). This T-cell epitope is capable of inducing a robust T-cell proliferative response in vaccinated goats with different genetic backgrounds and to provide help for a strong antibody response to the B-cell epitope, indicating that it may function as a universal antigen-carrier for goat vaccines. The primary immune response of goats homozygous for MHC class I and II genes showed an MHC-dependent partitioning in rapid-high and slow-low responses, whereas the memory immune response was strong in both groups, demonstrating that a vaccine based on this immunodominant T helper epitope is capable to overcome genetic differences.
Resumo:
The effect of cancer immunotherapy on the endogenous immune response against tumors is largely unknown. Therefore, we studied immune responses against murine tumors expressing the glycoprotein (GP) and/or nucleoprotein of lymphocytic choriomeningitis virus (LCMV) with or without adoptive T-cell therapy. In nontreated animals, CTLs specific for different epitopes as well as LCMV-GP-specific antibodies contributed to tumor surveillance. Adoptive immunotherapy with monoclonal CTLs specific for LCMV-gp33 impaired the endogenous tumor-specific antibody and CTL response by targeting antigen cross-presenting cells. As a consequence and in contrast to expectations, immunotherapy enhanced tumor growth. Thus, for certain immunogenic tumors, a reduction of tumor-specific B- and T-cell responses and enhanced tumor growth may be an unwanted consequence of adoptive immunotherapy.
Resumo:
Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.
Resumo:
Short synthetic peptides are important tools in biomedical research permitting to generate hapten specific polyclonal sera for analytical purposes or functional studies. In this paper we provide proof of principle that a peptide located in a highly conserved portion of the Gag protein of the caprine arthritis encephalitis virus and carrying an immunodominant T helper cell epitope functions as an efficient carrier peptide, mediating a strong antibody response to a peptidic hapten encompassing a well-characterized B cell epitope of Env. The carrier and hapten peptides were collinearly synthesized permutating their molecular arrangement. While the antibody response to the hapten was similar for both constructs, the antibody response to a B cell epitope overlapping the T helper cell epitope of the Gag carrier peptide was considerably different. This permits a modular use of the carrier peptide to generate antibody directed exclusively to the hapten peptide or a strong humoral response to both carrier- and hapten-peptide. Finally, we have mapped the epitopes involved in this polarized antibody response and discussed the potential immunological implications.
Resumo:
Interleukin-2 activated lymphocytes, designated lymphokine-activated killers (LAK), acquire the unique capacity to express potent cytologic activity against a broad spectrum of abnormal and/or transformed NK-sensitive and NK-resistant target cells while sparing normal cell types. Investigations into the target spectra exhibited by cloned effector cells indicate that LAK cells express a polyspecific recognition mechanism that identifies an undefined class of cell surface-associated molecules expressed on susceptible targets. This report extends our previous investigations into the biochemical nature of these molecules by characterizing the functional role of two tumor cell-surface-associated epitopes implicated in conferring target cells with susceptibility to LAK-mediated cytotoxicity. The first moiety is implicated in the formation of effector/target cell conjugates. This binding ligand is preferentially expressed on tumor cells relative to LAK-resistant PBL target cells, sensitive to trypsin treatment, resistant to functional inactivation by heat- and detergent-induced conformational changes, and does not require N-linked glycosylation to maintain binding activity. In contrast, a carbohydrate-associated epitope represents the second tumor-associated molecule required for target cell susceptibility to LAK cells. Specifically, N-linked glyoprotein synthesis represents an absolute requirement for post-trypsin recovery of target cell susceptibility. The minimal N-linked oligosaccharide residue capable of restoring this second signal has been identified as a high mannose structure. Although ultimately required for tumor cell susceptibility, as measured in $\sp{51}$Cr-release assays, this N-glycan-associated molecule is not required for the differential tumor cell binding expressed by LAK cells. Furthermore, N-glycan expression is not adequate in itself to confer target cell susceptibility. Additional categories of cell surface components have been investigated, including O-linked oligosaccharides, and glycosaminoglycans, without identifying additional moieties relevant to target cell recognition. Collectively, these data suggest that tumor cell recognition by LAK cells is dependent on cell surface presentation of two epitopes: a trypsin-sensitive molecule that participates in the initial conjugate formation and an N-glycan-associated moiety that is involved in a post-binding event required for target cell killing. ^