972 resultados para CR(CO)6
Resumo:
Signed: Roger I. McDonough, chairman, Curtis G. Shake, member, John W. Yeager, member.
Resumo:
Signed: James H. Wolfe, chairman, Robert E. Stone, member, Floyd McGown, member.
Resumo:
Item 247.
Resumo:
Includes index.
Resumo:
Cover title.
Resumo:
The Epstein-Barr virus nuclear antigen (EBNA)-6 protein is essential for Epstein-Barr virus (EBV)-induced immortalization of primary human B-lymphocytes in vitro. In this study, fusion proteins of EBNA-6 with green fluorescent protein (GFP) have been used to characterize its nuclear localization and organization within the nucleus. EBNA-6 associates with nuclear structures and in immunofluorescence demonstrate a punctate staining pattern. Herein, we show that the association of EBNA-6 with these nuclear structures was maintained throughout the cell cycle and with the use of GFP-E6 deletion mutants, that the region amino acids 733-808 of EBNA-6 contains a domain that can influence the association of EBNA-6 with these nuclear structures. Co-immunofluorescence and confocal analyses demonstrated that EBNA-6 and EBNA-3 co-localize in the nucleus of cells. Expression of EBNA-6, but not EBNA-3, caused a redistribution of nuclear survival of motor neurons protein (SMN) to the EBNA-6 containing nuclear structures resulting in co-localization of SMN with EBNA-6. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
We investigate the gradual changes of the microstructure of two blends of high-density polyethylene (HDPE) and polyamide 6 (PA6) at opposite composition filled with increasing amounts of an organomodified clay. The filler locates preferentially inside the polyamide phase, bringing about radical alterations in the micron-scale arrangement of the polymer phases. When the host polyamide represents the major constituent, a sudden reduction of the average sizes of the polyethylene droplets was observed upon addition of even low amounts of organoclay. A morphology refinement was also noticed at low filler contents when the particles distributes inside the minor phase. In this case, however, keep increasing the organoclay content eventually results in a high degree of PA6 phase continuity. Rheological analyses reveal that the filler loading at which the polyamide assembles in a continuous network corresponds to the critical threshold for its rheological transition from a liquid- to a gel-like behaviour, which is indicative of the structuring of the filler inside the host PA6. On the basis of this finding, a schematic mechanism is proposed in which the role of the filler in driving the space arrangement of the polymer phases is discussed. Finally, we show that the synergism between the reinforcing action of the filler and its ability to affect the blend microstructure can be exploited in order to enhance relevant technological properties of the materials, such as their high temperature structural integrity.
Resumo:
The effect of organically modified clay on the morphology, rheology and mechanical properties of high-density polyethylene (HDPE) and polyamide 6 (PA6) blends (HDPE/PA6 = 75/25 parts) is studied. Virgin and filled blends were prepared by melt compounding the constituents using a twin-screw extruder. The influence of the organoclay on the morphology of the hybrid was deeply investigated by means of wide-angle X-ray diffractometry, transmission and scanning electron microscopies and quantitative extraction experiments. It has been found that the organoclay exclusively places inside the more hydrophilic polyamide phase during the melt compounding. The extrusion process promotes the formation of highly elongated and separated organoclay-rich PA6 domains. Despite its low volume fraction, the filled minor phase eventually merges once the extruded pellets are melted again, giving rise to a co-continuous microstructure. Remarkably, such a morphology persists for long time in the melt state. A possible compatibilizing action related to the organoclay has been investigated by comparing the morphology of the hybrid blend with that of a blend compatibilized using an ethylene–acrylic acid (EAA) copolymer as a compatibilizer precursor. The former remains phase separated, indicating that the filler does not promote the enhancement of the interfacial adhesion. The macroscopic properties of the hybrid blend were interpreted in the light of its morphology. The melt state dynamics of the materials were probed by means of linear viscoelastic measurements. Many peculiar rheological features of polymer-layered silicate nanocomposites based on single polymer matrix were detected for the hybrid blend. The results have been interpreted proposing the existence of two distinct populations of dynamical species: HDPE not interacting with the filler, and a slower species, constituted by the organoclay-rich polyamide phase, which slackened dynamics stabilize the morphology in the melt state. In the solid state, both the reinforcement effect of the filler and the co-continuous microstructure promote the enhancement of the tensile modulus. Our results demonstrate that adding nanoparticles to polymer blends allows tailoring the final properties of the hybrid, potentially leading to high-performance materials which combine the advantages of polymer blends and the merits of polymer nanocomposites.
Resumo:
The purpose of this study was to evaluate the incidence of corrosion and fretting in 48 retrieved titanium-6aluminum-4vanadium and/or cobalt-chromium-molybdenum modular total hip prosthesis with respect to alloy material microstructure and design parameters. The results revealed vastly different performance results for the wide array of microstructures examined. Severe corrosion/fretting was seen in 100% of as-cast, 24% of low carbon wrought, 9% of high carbon wrought and 5% of solution heat treated cobalt-chrome. Severe corrosion/fretting was observed in 60% of Ti-6Al-4V components. Design features which allow for fluid entry and stagnation, amplification of contact pressure and/or increased micromotion were also shown to play a role. 75% of prosthesis with high femoral head-trunnion offset exhibited poor performance compared to 15% with a low offset. Large femoral heads (>32mm) did not exhibit poor corrosion or fretting. Implantation time was not sufficient to cause poor performance; 54% of prosthesis with greater than 10 years in-vivo demonstrated none or mild corrosion/fretting.
Resumo:
O objetivo deste estudo foi comparar a fusibilidade de ligas de Co-Cr-Mo-W (Remanium 2000), Ni-Cr (Durabond) e Co-Cr-Mo (Vera-PDI), incluídas em revestimentos à base de fosfato, sílica ou utilizando uma técnica mista. Uma rede de nylon quadrada (10 X 10 mm) com 100 espaços abertos serviu de modelo para construção de padrões de cera, que foram incluídos com revestimento à base de sílica, revestimento fosfatado e técnica mista (camada de revestimento fosfatado com 2 mm de espessura + revestimento à base de sílica). Quarenta e cinco espécimes (5 para cada condição experimental) foram fundidos sob chama de gás-oxigênio e a seguir jateados com óxido de alumínio. O número de segmentos fundidos completos foi contado para obter uma percentagem designada como "valor de fusibilidade", representando a precisão da liga em reproduzir os detalhes do molde. A análise estatística por meio de ANOVA a dois critérios e teste Tukey mostrou que, comparando-se as ligas, a Remanium 2000 teve fusibilidade estaticamente semelhante (p>0,05) à da Vera PDI e inferior à da liga Durabond (p<0,05). Considerando os resultados da técnica mista, a liga Remanium 2000 teve menor valor de fusibilidade (p<0,05) que as ligas Durabond e Vera PDI, que apresentaram valores estatisticamente semelhantes entre si (p>0,05). Concluindo, a fusibilidade da liga de Co-Cr-Mo-W (Remanium 2000) foi comparável à da liga de Co-Cr (Vera PDI) e inferior à da liga de Ni-Cr alloy (Durabond). À exceção da liga Remanium 2000, a técnica de inclusão mista aumentou consideravelmente a capacidade das ligas testadas de reproduzir os detalhes do molde, quando comparada à técnica de inclusão em revestimento fosfatado. A técnica de inclusão mista representa uma alternativa para melhorar a fusibilidade de ligas de metais básicos sem afetar a qualidade superficial das peças metálicas.