971 resultados para CORE-SHELL PHOSPHOR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins, as described in the accompanying paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of heteroepitaxially strained semiconductors at the nanoscale enables tailoring of material properties for enhanced device performance. For core/shell nanowires (NWs), theoretical predictions of the coherency limits and the implications they carry remain uncertain without proper identification of the mechanisms by which strains relax. We present here for the Ge/Si core/shell NW system the first experimental measurement of critical shell thickness for strain relaxation in a semiconductor NW heterostructure and the identification of the relaxation mechanisms. Axial and tangential strain relief is initiated by the formation of periodic a/2 〈110〉 perfect dislocations via nucleation and glide on {111} slip-planes. Glide of dislocation segments is directly confirmed by real-time in situ transmission electron microscope observations and by dislocation dynamics simulations. Further shell growth leads to roughening and grain formation which provides additional strain relief. As a consequence of core/shell strain sharing in NWs, a 16 nm radius Ge NW with a 3 nm Si shell is shown to accommodate 3% coherent strain at equilibrium, a factor of 3 increase over the 1 nm equilibrium critical thickness for planar Si/Ge heteroepitaxial growth. © 2012 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality CuS and CuS/ZnS core/shell nanocrystals (NCs) were synthesized in a large quantity using a facile hydrothermal method at low temperatures of 60 C and evaluated in the photodegradation of Rhodamine B (RhB) under visible light irradiation. Synthesis time plays an important role in controlling the morphology, size and photocatalytic activity of both CuS and CuS/ZnS core/shell NCs which evolve from spherical shaped particles to form rods with increasing reaction time, and after 5 h resemble "flower" shaped morphologies in which each "flower" is composed of many NCs. Photocatalytic activity originates from photo-generated holes in the narrow bandgap CuS, with encapsulation by large bandgap ZnS layers used to form the core/shell structure that improves the resistance of CuS towards photocorrosion. Such CuS/ZnS core/shell structures exhibit much higher photocatalytic activity than CuS or ZnS NCs alone under visible light illumination, and is attributed to higher charge separation rates for the photo-generated carriers in the core/shell structure. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of protein function in a cellular context ideally requires physiologically representative levels of that protein. Thus conventional nucleic acid-based transfection methods are far from ideal owing to the over expression that generally results. Likewise fusions with protein transduction domains can be problematic whilst delivery via liposomes/nanoparticles typically results in endosomal localisation. Recently polymer microspheres have been reported to be highly effective at delivering proteins into cells and thus provide a viable new alternative for protein delivery (protein transduction). Herein we describe the successful delivery of active ribonuclease A into HeLa cells via novel polymer core-silica shell microspheres. Specifically, poly(styrene-co-vinylbenzylisothiouronium chloride) core particles, generated by dispersion polymerisation, were coated with a poly(styrene-co-trimethoxysilylpropyl methacrylate) shell. The resultant core-shell morphology was characterised by transmission electron, scanning electron and fluorescence confocal microscopies, whilst size and surface charge was assessed by dynamic light scattering and zeta-potential measurements, respectively. Subsequently ribonuclease A was coupled to the microspheres using simple carbodiimide chemistry. Gel electrophoresis confirmed and quantified the activity of the immobilised enzyme against purified HeLa RNA. Finally, the polymer-protein particles were evaluated as protein-transduction vectors in vitro to deliver active ribonuclease A to HeLa cells. Cellular uptake of the microspheres was successful and resulted in reduced levels of both intracellular RNA and cell viability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

N-doped ZnO/g-C3N4 hybrid core–shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core–shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core–shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core–shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core–shell composite photocatalysts with g-C3N4 as shell material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the Kerr nonlinearity in a core-shell microspherical resonator fabricated from a silicon fiber. By exploiting the ultrafast wavelength shifting, sub-picosecond modulation is demonstrated. © OSA 2015.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work has as objective the development of ceramic pigments based in iron oxides and cobalt through the polymeric precursor method, as well as study their characteristics and properties using methods of physical, chemical, morphological and optical characterizations.In this work was used iron nitrate, and cobalt citrate as precursor and nanometer silica as a matrix. The synthesis was based on dissolving the citric acid as complexing agent, addition of metal oxides, such as chromophores ions and polymerization with ethylene glycol. The powder obtained has undergone pre-ignition, breakdown and thermal treatments at different calcination temperatures (700 °C, 800 °C, 900 °C, 1000 °C and 1100 °C). Thermogravimetric analyzes were performed (BT) and Differential Thermal Analysis (DTA), in order to evaluate the term decomposition of samples, beyond characterization by techniques such as BET, which classified as microporous materials samples calcined at 700 ° C, 800 º C and 900 º C and non-porous when annealed at 1000 ° C and 1100 º C, X-ray diffraction (XRD), which identified the formation of two crystalline phases, the Cobalt Ferrite (CoFe2O4) and Cristobalite (SiO2), Scanning Electron Microscopy (SEM) revealed the formation of agglomerates of particles slightly rounded;and Analysis of Colorimetry, temperature of 700 °C, 800 °C and 900 °C showed a brown color and 1000 °C and 1100 °C violet

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of technologies for the recycling of carbon dioxide into carbon-containing fuels is one of the major challenges in sustainable energy research. Two of the main current limitations are the poor efficiency and fast deactivation of catalysts. Core–shell nanoparticles are promising candidates for enhancing challenging reactions. In this work, Au@Cu core–shell nanoparticles with well-defined surface structures were synthesized and evaluated as catalysts for the electrochemical reduction of carbon dioxide in neutral medium. The activation potential, the product distribution and the long term durability of this catalyst were assessed by electrochemical methods, on-line electrochemical mass spectrometry (OLEMS) and on-line high performance liquid chromatography. Our results show that the catalytic activity and the selectivity can be tweaked as a function of the thickness of Cu shells. We have observed that the Au cubic nanoparticles with 7–8 layers of copper present higher selectivity towards the formation of hydrogen and ethylene; on the other hand, we observed that Au cubic nanoparticles with more than 14 layers of Cu are more selective towards the formation of hydrogen and methane. A trend in the formation of the gaseous products can be also drawn. The H2 and CH4 formation increases with the number of Cu layers, while the formation of ethylene decreases. Formic acid was the only liquid species detected during CO2 reduction. Similar to the gaseous species, the formation of formic acid is strongly dependent on the number of Cu layers on the core@shell nanoparticles. The Au cubic nanoparticles with 7–8 layers of Cu showed the largest conversion of CO2 to formic acid at potentials higher than 0.8 V vs. RHE. The observed trends in reactivity and selectivity are linked to the catalyst composition, surface structure and strain/electronic effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the growth of (In, Ga)N core−shell micro pillars by plasma-assisted molecular beam epitaxy using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template. Upon (In, Ga)N growth, core−shell structures with emission at around 3.0 eV are formed. Further, the fabrication of a core−shell pin structure is demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A successful trial on preparing natural rubber based core-shell structured fibres by co-axial electrospinning and fabrication of artificial blood vessel scaffolds from crosslinked fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO (core)/graphitic (shell) nanowires were successfully fabricated by a one-step method. Morphology of the as-grown nanowires was studied in detail by scanning electron microscopy, transmission electron microscopy (TEM), and energy dispersive X-ray analysis (EDS). High resolution TEM micrographs and selected area electron diffraction patterns reveal the core/shell morphology of the nanowires that grew along the c-axis of ZnO. EDS study of the nanowires confirms that there are no impurities within the detectable limit. Superconducting quantum interference device magnetometer measurements show room temperature ferromagnetic ordering in these core/shell nanowires. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 degrees C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core-shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/mu m and a high current density of 1.0 mA/cm(2) at 4.5 V/mu m for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly crystalline CaMoO4:Tb3+ phosphor layers were grown on monodisperse SiO2 particles through a simple sol-gel method, resulting in formation of core-shell structured SiO2@CaMoO4:Tb3+ submicrospheres. The resulting SiO2@CaMoO4: Tb3+ core-shell particles were fully characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), and kinetic decays. The XRD results demonstrate that the CaMoO4:Tb3+ layers begin to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. SEM and TEM analysis indicates that the obtained submicrospheres have a uniform size distribution and obvious core-shell structure. SiO2@CaMoO4:Tb3+ submicrospheres show strong green emission under short ultraviolet (260 nm) and low-voltage electron beam (1-3 kV) excitation, and the emission spectra are dominated by a D-5(4) -F-7(5) transition of Tb3+(544 nm, green) from the CaMoO4:Tb3+ shells.