172 resultados para COMPRESSIBILITY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bioavailability of BCS II compounds may be improved by an enhanced solubility and dissolution rate. Four carboxylic acid drugs were selected, which were flurbiprofen, etodolac, ibuprofen and gemfibrozil. The drugs were chosen because they are weak acids with poor aqueous solubility and should readily form salts. The counterions used for salt formation were: butylamine, pentylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan­2-ol, 2-amino-2-methyl propan-1,3-ol and tromethamine. Solubility was partially controlled by the saturated solution pH with the butylamine counterion increasing the solution pH and solubility and dissolution to the greatest extent. As the chain length increased, solubility was reduced due to the increasing lipophilic nature of the counterion. The benzylamine and cyclohexylamine counterions produced crystalline, stable salts but did not improve solubility and dissolution significantly compared to the parent compound. The substitution of hydroxyl groups to tert-butylamine counterions produced an increase in solubility and dissolution. AMP2 resulted in the most enhanced solubility and dissolution compared to the parent drug but using the tris salt did not further improve solubility due to a very stable crystal lattice structure. The parent drugs were very difficult to compress due to orientation effects and lamination. Compacts were prepared of each parent drug and salt and their modulus of elasticity values were measured using a three-point bend (Young’s modulus, E0) were extrapolated to zero porosity and compared. Compressibility and E0 were improved with the butylamine, tert-butylamine, cyclohexylamine and AMP2 counterions. The most significant improvement in compression and E0 was with the AMP2 salts. Mechanical properties were related to the hydrogen bonding within the crystal lattice structure for the gemfibrozil salt series.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous work has indicated the presence of collapsing and structured soils in the surface layers underlying Sana's, the capital of Yemen Republic. This study set out initially to define and, ultimately, to alleviate the problem by investigating the deformation behaviour of these soils through both field and laboratory programmes. The field programme was carried out in Sana'a while the laboratory work consisted of two parts, an initial phase at Sana's University carried out in parallel with the field programme on natural and treated soils and the major phase at Aston University carried out on natural, destructured and selected treated soils. The initial phase of the laboratory programme included classification, permeability, and single (collapsing) and double oedometer tests while the major phase, at Aston, was extended to also include extensive single and double oedometer tests, Scanning Electron Microscopy and Energy Dispersive Spectrum analysis. The mechanical tests were carried out on natural and destructed samples at both the in situ and soaked moisture conditions. The engineering characteristics of the natural intact, field-treated and laboratory destructured soils are reported, including their collapsing potentials which show them to be weakly bonded with nil to severe collapsing susceptibility. Flooding had no beneficial effect, with limited to moderate improvement being achieved by preloading and roller compaction, while major benefits were achieved from deep compaction. From these results a comparison between the soil response to the different treatments and general field remarks were presented. Laboratory destructuring reduced the stiffness of the soils while their compressibility was increasing. Their collapsing and destructuring mechanisms have been examined by studying the changes in structure accompanying these phenomena. Based on the test results for the intact and the laboratory destructured soils, a simplified framework has been developed to represent the collapsing and deformation behaviour at both the partially saturated and soaked states, and comments are given on its general applicability and limitations. It has been used to evaluate all the locations subjected to field treatment. It provided satisfactory results for the deformation behaviour of the soils destructed by field treatment. Finally attention is drawn to the design considerations together with the recommendations for the selection of potential improvement techniques to be used for foundation construction on the particular soils of the Sana's region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The successful development of compressed ODTs utilises low compression forces to create a porous structure whereby excipients are added to enhance wicking/swelling action or provide strength to the fragile tablet framework. In this work, a systematic investigation comparing materials from two different categories was employed to understand their functionality in binary mixture tablets of the most commonly used diluent mannitol. Cellulose based excipients such as HPC (SSL-SFP), L-HPC (NBD-022) and MCC (Avicel PH-102) were compared with non-cellulosic materials such as PEO (POLYOX WSR N-10) and Crospovidone (XL-10). Pure excipient properties were studied using Heckel Plot, compressibility profile, SEM and XRPD, whereas the prepared binary mixture compacts were studied for hardness, disintegration time and friability. Results from our investigation provide insight into differences encountered in product performance of ODT upon inclusion of additional materials. For example, non-cellulosic excipients Polyox and Crospovidone showed higher plasticity (Py values 588 and 450MPa) in pure form but not in binary mixtures of mannitol. Cellulosic excipients, nonetheless, offer faster disintegration (<30 sec) specifically L-HPC and MCC tablets. Disintegration time for tablets with fully substituted-HPC was prolonged (200-500 sec) upon increasing concentration between 1-10% due to gelation/matrix formation. It can be concluded that despite the reasonably good plasticity of both cellulosic and non-cellulosic excipients in pure form, the mechanical strength in binary mixtures is negatively impacted by the fragmentation/fracture effect of mannitol. © 2014 Bentham Science Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ODTs have emerged as a novel oral dosage form with a potential to deliver a wide range of drug candidates to paediatric and geriatric patients. Compression of excipients offers a costeffective and translatable methodology for the manufacture of ODTs. Though, technical challenges prevail such as difficulty to achieve suitable tablet mechanical strength while ensuring rapid disintegration in the mouth, poor compressibility of preferred ODT diluent Dmannitol, and limited use for modified drug-release. The work investigates excipients’ functionality in ODTs and proposes new methodologies for enhancing material characteristics via process and particle engineering. It also aims to expand ODT applications for modified drug-release. Preformulation and formulation studies employed a plethora of techniques/tests including AFM, SEM, DSC, XRD, TGA, HSM, FTIR, hardness, disintegration time, friability, stress/strain and Heckel analysis. Tableting of D-mannitol and cellulosic excipients utilised various compression forces, material concentrations and grades. Engineered D-mannitol particles were made by spray drying mannitol with pore former NH4HCO3. Coated microparticles of model API omeprazole were prepared using water-based film forming polymers. The results of nanoscopic investigations elucidated the compression profiles of ODT excipients. Strong densification of MCC (Py is 625 MPa) occurs due to conglomeration of physicomechanical factors whereas D-mannitol fragments under pressure leading to poor compacts. Addition of cellulosic excipients (L-HPC and HPMC) and granular mannitol to powder mannitol was required to mechanically strengthen the dosage form (hardness >60 N, friability <1%) and to maintain rapid disintegration (<30 sec). Similarly, functionality was integrated into D-mannitol by fabrication of porous, yet, resilient particles which resulted in upto 150% increase in the hardness of compacts. The formulated particles provided resistance to fracture under pressure due to inherent elasticity while promoted tablet disintegration (50-77% reduction in disintegration time) due to porous nature. Additionally, coated microparticles provided an ODT-appropriate modified-release coating strategy by preventing drug (omeprazole) release.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show experimentally and numerically new transient lasing regime between stable single-pulse generation and noise-like generation. We characterize qualitatively all three regimes of single pulse generation per round-trip of all-normal-dispersion fiber lasers mode-locked due to effect of nonlinear polarization evolution. We study spectral and temporal features of pulses produced in all three regimes as well as compressibility of such pulses. Simple criteria are proposed to identify lasing regime in experiment. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high-pressure and temperature investigations on transition metals, metal doped-oxide system, nanocrystalline materials are presented in this dissertation. The metal-doped oxide systems are technologically important because of their applications, e.g. LSC, opto electronic applications, luminescence from lasers, etc., and from the earth sciences point of view, e.g. the study of trace elements in the MgO-SiO2 system, which accounts for 50% of the Earth's chondritic model. We have carried out thorough investigations on Cr2O3 and on chromium bearing oxides at high PT-conditions using in situ X-ray diffractometry and florescence spectroscopy techniques. Having obtained exciting results, an attempt to focus on the mechanism of the coordination of transition metals in oxides has been made. Additionally, the florescence from the metals in host oxides was found to be helpful to obtain information on structural variations like changes in the coordination of the doped element, formation of new phases, the diffusion processes. The possible reactions taking place at extreme conditions in the MgO-SiO2 system has been observed using florescence as markers. A new heating assemblage has been designed and fabricated for a precise determination of temperature at high pressures. An equation combining pressure shifts of ruby wavelength and temperature has been proposed. We observed that the compressibility of nanocrystalline material (MgO and Ni) is independent of crystallite size. A reduction in the transition pressure of nanocrystalline ceria at high-pressure has been observed as compare to the corresponding bulk material. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mn+1AXn compounds, the ternary layered nanolaminates have gathered momentum in the last decade since its advent because of their unusual but exciting properties. These technologically important compounds combine some of the best properties of metals and ceramics. Like ceramics they are refractory, oxidation resistant, elastically stiff and relatively light. They also exhibit metallic properties like excellent machinability, thermal and electrical conductivity. This dissertation concentrates on the synthesis of germanium-based 211 Mn+1AXn compounds. The main objective of the research was to synthesize predominantly single phase samples of Cr2GeC, V2GeC and Ti2GeC. Another goal was to study the effect of solid substitutions on the M-site of Mn+1AXn compounds with Ge as an A-element. This study is in itself the first to demonstrate the synthesis of (Cr0.5V0.5)2GeC a novel Mn+1AXn compound. Scanning electron microscopy coupled with energy dispersive spectroscopy, x-ray diffraction and electron probe microanalysis were employed to confirm the presence of predominantly single phase samples of M2GeC compounds where M = Ti, V, Cr and (Cr 0.5V0.5). A large part of the dissertation also focuses on the effect of the compressibility on the Ge-based 211 Mn+1AXn compounds with the aid of diamond anvil cell and high energy synchrotron radiation. This study also concentrates on the stability of these compounds at high temperature and thereby determines its suitability as high temperature structural materials. In order to better understand the effect of substitutions on A-site of 211 Mn+1 AXn compounds under high pressure and high temperature, a comparison is made with previously reported 211 Mn+1AXn compounds with Al, Ga and S as A-site elements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen can be an unlimited source of clean energy for future because of its very high energy density compared to the conventional fuels like gasoline. An efficient and safer way of storing hydrogen is in metals and alloys as hydrides. Light metal hydrides, alanates and borohydrides have very good hydrogen storage capacity, but high operation temperatures hinder their application. Improvement of thermodynamic properties of these hydrides is important for their commercial use as a source of energy. Application of pressure on materials can have influence on their properties favoring hydrogen storage. Hydrogen desorption in many complex hydrides occurs above the transition temperature. Therefore, it is important to study the physical properties of the hydride compounds at ambient and high pressure and/or high temperature conditions, which can assist in the design of suitable storage materials with desired thermodynamic properties. ^ The high pressure-temperature phase diagram, thermal expansion and compressibility have only been evaluated for a limited number of hydrides so far. This situation serves as a main motivation for studying such properties of a number of technologically important hydrides. Focus of this dissertation was on X-ray diffraction and Raman spectroscopy studies of Mg2FeH6, Ca(BH4) 2, Mg(BH4)2, NaBH4, NaAlH4, LiAlH4, LiNH2BH3 and mixture of MgH 2 with AlH3 or Si, at different conditions of pressure and temperature, to obtain their bulk modulus and thermal expansion coefficient. These data are potential source of information regarding inter-atomic forces and also serve as a basis for developing theoretical models. Some high pressure phases were identified for the complex hydrides in this study which may have better hydrogen storage properties than the ambient phase. The results showed that the highly compressible B-H or Al-H bonds and the associated bond disordering under pressure is responsible for phase transitions observed in brorohydrides or alanates. Complex hydrides exhibited very high compressibility suggesting possibility to destabilize them with pressure. With high capacity and favorable thermodynamics, complex hydrides are suitable for reversible storage. Further studies are required to overcome the kinetic barriers in complex hydrides by catalytic addition. A comparative study of the hydride properties with that of the constituting metal, and their inter relationships were carried out with many interesting features.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation studies the manipulation of particles using acoustic stimulation for applications in microfluidics and templating of devices. The term particle is used here to denote any solid, liquid or gaseous material that has properties, which are distinct from the fluid in which it is suspended. Manipulation means to take over the movements of the particles and to position them in specified locations. Using devices, microfabricated out of silicon, the behavior of particles under the acoustic stimulation was studied with the main purpose of aligning the particles at either low-pressure zones, known as the nodes or high-pressure zones, known as anti-nodes. By aligning particles at the nodes in a flow system, these particles can be focused at the center or walls of a microchannel in order to ultimately separate them. These separations are of high scientific importance, especially in the biomedical domain, since acoustopheresis provides a unique approach to separate based on density and compressibility, unparalleled by other techniques. The study of controlling and aligning the particles in various geometries and configurations was successfully achieved by controlling the acoustic waves. Apart from their use in flow systems, a stationary suspended-particle device was developed to provide controllable light transmittance based on acoustic stimuli. Using a glass compartment and a carbon-particle suspension in an organic solvent, the device responded to acoustic stimulation by aligning the particles. The alignment of light-absorbing carbon particles afforded an increase in visible light transmittance as high as 84.5%, and it was controlled by adjusting the frequency and amplitude of the acoustic wave. The device also demonstrated alignment memory rendering it energy-efficient. A similar device for suspended-particles in a monomer enabled the development of electrically conductive films. These films were based on networks of conductive particles. Elastomers doped with conductive metal particles were rendered surface conductive at particle loadings as low as 1% by weight using acoustic focusing. The resulting films were flexible and had transparencies exceeding 80% in the visible spectrum (400-800 nm) These films had electrical bulk conductivities exceeding 50 S/cm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This is the second part of the assessment of primary energy conversions of oscillating water columns (OWCs) wave energy converters. In the first part of the research work, the hydrodynamic performance of OWC wave energy converter has been extensively examined, targeting on a reliable numerical assessment method. In this part of the research work, the application of the air turbine power take-off (PTO) to the OWC device leads to a coupled model of the hydrodynamics and thermodynamics of the OWC wave energy converters, in a manner that under the wave excitation, the varying air volume due to the internal water surface motion creates a reciprocating chamber pressure (alternative positive and negative chamber pressure), whilst the chamber pressure, in turn, modifies the motions of the device and the internal water surface. To do this, the thermodynamics of the air chamber is first examined and applied by including the air compressibility in the oscillating water columns for different types of the air turbine PTOs. The developed thermodynamics is then coupled with the hydrodynamics of the OWC wave energy converters. This proposed assessment method is then applied to two generic OWC wave energy converters (one bottom fixed and another floating), and the numerical results are compared to the experimental results. From the comparison to the model test data, it can be seen that this numerical method is capable of assessing the primary energy conversion for the oscillating water column wave energy converters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents an investigation to the thermodynamics of the air flow in the air chamber for the oscillating water column wave energy converters, in which the oscillating water surface in the water column pressurizes or de-pressurises the air in the chamber. To study the thermodynamics and the compressibility of the air in the chamber, a method is developed in this research: the power take-off is replaced with an accepted semi-empirical relationship between the air flow rate and the oscillating water column chamber pressure, and the thermodynamic process is simplified as an isentropic process. This facilitates the use of a direct expression for the work done on the power take-off by the flowing air and the generation of a single differential equation that defines the thermodynamic process occurring inside the air chamber. Solving the differential equation, the chamber pressure can be obtained if the interior water surface motion is known or the chamber volume (thus the interior water surface motion) if the chamber pressure is known. As a result, the effects of the air compressibility can be studied. Examples given in the paper have shown the compressibility, and its effects on the power losses for large oscillating water column devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a study on the numerical simulation of the primary wave energy conversion in the oscillating water column (OWC) wave energy converters (WECs). The new proposed numerical approach consists of three major components: potential flow analysis for the conventional hydrodynamic parameters, such as added mass, damping coefficients, restoring force coefficients and wave excitations; the thermodynamic analysis of the air in the air chamber, which is under the assumptions of the given power take-off characteristics and an isentropic process of air flow. In the formulation, the air compressibility and its effects have been included; and a time-domain analysis by combining the linear potential flow and the thermodynamics of the air flow in the chamber, in which the hydrodynamics and thermodynamics/aerodynamics have been coupled together by the force generated by the pressurised and de-pressurised air in the air chamber, which in turn has effects on the motions of the structure and the internal water surface. As an example, the new developed approach has been applied to a fixed OWC device. The comparisons of the measured data and the simulation results show the new method is very capable of predicting the performance of the OWC devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the design and characterisation of the rheological and mechanical properties of binary polymeric systems composed of 2-Hydroxypropylcellulose and ɩ-carrageenan, designed as ophthalmic viscoelastic devices (OVDs). Platforms were characterised using dilute solution, flow and oscillatory rheometry and texture profile analysis. Rheological synergy between the two polymers was observed both in the dilute and gel states. All platforms exhibited pseudoplastic flow. Increasing polymer concentrations significantly decreased the loss tangent and rate index yet increased the storage and loss moduli, consistency, gel hardness, compressibility and adhesiveness, the latter being related to the in-vivo retention properties of the platforms. Binary polymeric platforms exhibited unique physicochemical properties, properties that could not be engineered using mono-polymeric platforms. Using characterisation methods that provide information relevant to their clinical performance, low-cost binary platforms (3% hydroxypropylcellulose and either 1% or 2% ɩ-carrageenan) were identified that exhibited rheological, textural and viscoelastic properties advantageous for use as OVDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The knowledge of thermodynamic high-pressure speed of sound in ionic liquids (ILs) is a crucial way either to study the nature of the molecular interactions, structure and packing effects or to determine other key thermodynamic properties of ILs essential for their applications in any chemical and industrial processes. Herein, we report the speed of sound as a function temperature at pressures up to 101 MPa in four ultrapure ILs: 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, taking into consideration their relaxation behavior. Additionally, to further improve the reliability of the speed of sound results, the density, isentropic compressibility, and isobaric heat capacity as a function of temperature and pressure are calculated using an acoustic method.