993 resultados para COMBUSTION METHOD


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel, cost effective,environment-friendly and energetically beneficial alternative method for the synthesis of giant dielectric pseudo-perovskite material CaCu3Ti4O12 (CCTO) is presented. The method involved auto-combustion of an aqueous precursor solution in oxygen atmosphere with the help of external fuels and is capable of producing high amount of CCTO at ultra-low temperature, in the combustion residue itself. The amount of phase generated was observed to be highly dependent on the combustion process i.e. on the nature and amount of external-fuels added for combustion. Two successful fuel combinations capable of producing reasonably higher amount of the desired compound were investigated. On a structural characterization grain size was observed to decrease drastically to nano-dimension compared to submicron-size that was obtained in a traditional sol-gel combustion and subsequent cacination method. Therefore, the method reported can produce nano-crystalline CaCu3Ti4O12 ceramic matrix at an ultra-low temperature and is expected to be applicable for other multifunctional perovskite oxide materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal power stations use pulverized coal as fuel, producing enormous quantities of ash as a by-product of combustion. Currently, with very low utilization of the ash produced, the ash deposits at the thermal power stations are increasing rapidly. The disposal problem is expected to become alarming due to the limited space available for ash disposal near most thermal power stations. Among the various applications available for the use of fly ash, geotechnical application offers opportunity for its bulk utilization. However, the possibility of ground and surface water contamination due to the leaching of toxic elements present in the fly ash needs to be addressed. This paper describes a study carried out on two Indian fly ashes. It is found that pH is the controlling factor in the leaching behavior of fly ashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combustion technique produces ionically dispersed Ag on a nano-crystalline CeO2 surface. The catalysts thus produced were characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic properties towards NO reduction, CO and hydrocarbon oxidation have been investigated using the temperature programmed reaction technique in a packed bed tubular reactor. These results are compared with alpha-Al2O3 supported finely divided Ag metal particles synthesized by the same method. Both oxidation and reduction reactions over Ag/CeO2 have been observed to occur at lower temperatures compared to Ag/Al2O3. The rate and turnover frequency of the NO+CO reaction over 1% Ag/CeO2 are 56.3 mu mol g(-1) s(-1) and 0.97 s(-1) at 225 degrees C respectively. Activation energy (E-a) values are 71 and 67 kJ mol(-1) for CO+O-2 and NO+CO reactions, respectively, over 1% Ag/CeO2 catalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The facile method of solution combustion was used to synthesize gamma(L)-Bi(2)MoO(6). The material was crystallized in a purely crystalline orthorhombic phase with sizes varying from 300 to 500 nm. Because the band gap was 2.51 eV, the degradation of wide variety of cationic and anionic dyes was investigated under solar radiation. Despite the low surface area (< 1 m(2)/g) of the synthesized material, gamma(L)-Bi(2)MoO(6) showed high photocatalytic activity under solar radiation due to its electronic and morphological properties. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Powder neutron di®raction and Hi-Q neutron di®raction data have been recorded and analysed in order to obtain the local and long range order of Cu in Cu-doped CeO2 with three doping levels of Cu. Rietveld method and MCGR techniques of data analysis for the two types of data reveal that the Cu ion is in the 2+ oxidation state and has a vacancy in its ¯rst coordination shell. These deductions from the data analysis ¯t well with the mechanism of catalysis we propose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photocatalytic activity of commercial titanium dioxide under UV and visible radiation was improved by composites of tungsten trioxide (WO3) with TiO2. WO3 was prepared by solution combustion synthesis and the mixed oxides/composites of WO3-TiO2 were prepared in different weight ratios (0, 0.10, 0.15, 0.20, 0.25, 0.50, 0.75, and 1) by physical mixing. These catalysts were characterized by XRD, DRS, BET, SEM, TEM, pH drift method, TGA and photoluminescence. The photocatalytic activity varies with the WO3 loading in the composites. The optimum loading of WO3 in the composites was found to be 15 wt% for both UV and visible radiation. This loading showed faster dye degradation rate than commercial TiO2 (TiO2-C) and WO3 (WO3-C). The effect of initial concentrations of methylene blue (MB) and orange G (OG) and the effect of the functional group on dye degradation was studied with both anionic and cationic dyes with 15 wt% WO3-TiO2. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient ZnO:Eu3+ (1-11 mol%) nanophosphors were prepared for the first time by green synthesis route using Euphorbia tirucalli plant latex. The final products were well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), etc. The average particle size of ZnO:Eu3+ (7 mol%) was found to be in the range 27-47 nm. With increase of plant latex, the particle size was reduced and porous structure was converted to spherical shaped particles. Photoluminescence (PL) spectra indicated that the peaks situated at similar to 590, 615, 648 and 702 nm were attributed to the D-5(0) -> F-7(j(j=1,2,3,4)) transitions of Eu3+ ions. The highest PL intensity was recorded for 7 mol% with Eu3+ ions and 26 ml plant latex concentration. The PL intensity increases with increase of plant latex concentration up to 30 ml and there after it decreases. The phosphor prepared by this method show spherical shaped particles, excellent chromaticity co-ordinates in the white light region which was highly useful for WLED's. Further, present method was reliable, environmentally friendly and alternative to economical routes. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eu2+ ion doped into a suitable host results in an efficient luminophore with engineering relevance; however stabilizing this ion in a host is known to be a challenge. Here we report a novel approach for the synthesis of efficient CaAl2O4 phosphor containing Eu2+ luminophore and Cr3+ activator. CaAl2O4:Eu2+, Cr3+ is prepared by a solution combustion (SCS) method using (i) urea, (ii) oxalyl dihydrazide (ODH) and (iii) fuel-blend (in which overall fuel to oxidizer ratio (F/O) = 1). A Multi-channel thermocouple setup is used to measure the flame temperatures to study the nature of combustion of various fuel mixtures. The variation of adiabatic flame temperature is calculated theoretically for different urea/ODH mixture ratios according to thermodynamic concept and correlated with the observed flame temperatures. Blue emission of the CaAl2O4:Eu2+ phosphor is enhanced similar to 20 times using the fuel-blend approach. Using the observed reaction kinetics, and the known chemistry of smoldering type combustion, a mechanism is proposed for the observed stabilization of Eu2+ ion in the fuel-blend case. This also explains the observed improvement in blue light emission. We show that the right choice of the fuel ratio is essential for enhancing photoluminescence (PL) emission. The PL intensity is highest for ODH lean and urea rich combination (i.e. when the ratio of ODH:urea is 1:5); measured color purity is comparable to commercial blue phosphor, BAM:Eu2+. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study demonstrates the synthesis of TiO2 nanobelts using solution combustion derived TiO2 with enhanced photocatalytic activity for dye degradation and bacterial inactivation. Hydrothermal treatment of combustion synthesized TiO2 resulted in unique partially etched TiO2 nanobelts and Ag3PO4 was decorated using the co-precipitation method. The catalyst particles were characterized using X-ray diffraction analysis, BET surface area analysis, diffuse reflectance and electron microscopy. The photocatalytic properties of the composites of Ag3PO4 with pristine combustion synthesized TiO2 and commercial TiO2 under sunlight were compared. Therefore the studies conducted proved that the novel Ag3PO4/unique combustion synthesis derived TiO2 nanobelt composites exhibited extended light absorption, better charge transfer mechanism and higher generation of hydroxyl and hole radicals. These properties resulted in enhanced photodegradation of dyes and bacteria when compared to the commercial TiO2 nanocomposite. These findings have important implications in designing new photocatalysts for water purification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of combustion driver ignited by multi-spark plugs distributed along axial direction has been analysed and tested. An improved ignition method with three circumferential equidistributed ignitors at main diaphragm has been presented, by which the produced incident shock waves have higher repeatability, and better steadiness in the pressure, temperature and velocity fields of flow behind the incident shock, and thus meets the requirements of aerodynamic experiment. The attachment of a damping section at the end of the driver can eliminate the high reflection pressure produced by detonation wave, and the backward detonation driver can be employed to generate high enthalpy and high density test flow. The incident shock wave produced by this method is well repeated and with weak attenuation. The reflection wave caused by the contracted section at the main diaphragm will weaken the unfavorable effect of rarefaction wave behind the detonation wave, which indicates that the forward detonation driver can be applied in the practice. For incident shock wave of identical strength, the initial pressure of the forward detonation driver is about 1 order of magnitude lower than that of backward detonation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In HCCI engines, the Air/Fuel Ratio (AFR) and Residual Gas Fraction (RGF) are difficult to control during the SI-HCCI-SI transition, and this may result in incomplete combustion and/or high pressure raise rates. As a result, there may be undesirably high engine load fluctuations. The objectives of this work are to further understand this process and develop control methods to minimize these load fluctuations. This paper presents data on instantaneous AFR and RGF measurements, both taken by novel experimental techniques. The data provides an insight into the cyclic AFR and RGF fluctuations during the switch. These results suggest that the relatively slow change in the intake Manifold Air Pressure (MAP) and actuation time of the Variable Valve Timing (VVT) are the main causes of undesired AFR and RGF fluctuations, and hence an unacceptable Net IMEP (NIMEP) fluctuation. We also found large cylinder-to-cylinder AFR variations during the transition. Therefore, besides throttle opening control and VVT shifting, cyclic and individual cylinder fuel injection control is necessary to achieve a smooth transition. The control method was developed and implemented in a test engine, and the result was a considerably reduced NIMEP fluctuation during the mode switch. The instantaneous AFR and RGF measurements could furthermore be adopted to develop more sophisticated control methods for SI-HCCI-SI transitions. © 2010 SAE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algebraic unified second-order moment (AUSM) turbulence-chemistry model of char combustion is introduced in this paper, to calculate the effect of particle temperature fluctuation on char combustion. The AUSM model is used to simulate gas-particle flows, in coal combustion in a pulverized coal combustor, together with a full two-fluid model for reacting gas-particle flows and coal combustion, including the sub-models as the k-epsilon-k(p) two-phase turbulence niodel, the EBU-Arrhenius volatile and CO combustion model, and the six-flux radiation model. A new method for calculating particle mass flow rate is also used in this model to correct particle outflow rate and mass flow rate for inside sections, which can obey the principle of mass conservation for the particle phase and can also speed up the iterating convergence of the computation procedure effectively. The simulation results indicate that, the AUSM char combustion model is more preferable to the old char combustion model, since the later totally eliminate the influence of particle temperature fluctuation on char combustion rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Progress is made on the numerical modeling of both laminar and turbulent non-premixed flames. Instead of solving the transport equations for the numerous species involved in the combustion process, the present study proposes reduced-order combustion models based on local flame structures.

For laminar non-premixed flames, curvature and multi-dimensional diffusion effects are found critical for the accurate prediction of sooting tendencies. A new numerical model based on modified flamelet equations is proposed. Sooting tendencies are calculated numerically using the proposed model for a wide range of species. These first numerically-computed sooting tendencies are in good agreement with experimental data. To further quantify curvature and multi-dimensional effects, a general flamelet formulation is derived mathematically. A budget analysis of the general flamelet equations is performed on an axisymmetric laminar diffusion flame. A new chemistry tabulation method based on the general flamelet formulation is proposed. This new tabulation method is applied to the same flame and demonstrates significant improvement compared to previous techniques.

For turbulent non-premixed flames, a new model to account for chemistry-turbulence interactions is proposed. %It is found that these interactions are not important for radicals and small species, but substantial for aromatic species. The validity of various existing flamelet-based chemistry tabulation methods is examined, and a new linear relaxation model is proposed for aromatic species. The proposed relaxation model is validated against full chemistry calculations. To further quantify the importance of aromatic chemistry-turbulence interactions, Large-Eddy Simulations (LES) have been performed on a turbulent sooting jet flame. %The aforementioned relaxation model is used to provide closure for the chemical source terms of transported aromatic species. The effects of turbulent unsteadiness on soot are highlighted by comparing the LES results with a separate LES using fully-tabulated chemistry. It is shown that turbulent unsteady effects are of critical importance for the accurate prediction of not only the inception locations, but also the magnitude and fluctuations of soot.