959 resultados para COLLOIDAL RODS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the edited translation of the paper by Walter Findeisen “Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung” (Colloidal meteorological processes in the formation of precipitation) that was published 1938 in the Meteorologische Zeitschrift 55, 121–133

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the correlation between the impregnation of proton exchange membrane fuel cell catalysts with perfluorosulfonate-ionomer (PFSI) and its electrochemical and electrocatalytic properties is investigated for different Pt loadings and carbon supports using a rotating-disk electrode (RDE) setup. We concentrate on its influence on the electrochemical surface area (ECSA) and the oxygen reduction reaction (ORR) activity. For this purpose, platinum (Pt) nanoparticles are prepared via a colloidal based preparation route and supported on three different carbon supports. Based on RDE experiments, we show that the ionomer has an influence both on the Pt utilization and the apparent kinetic current density of ORR. The experimental data reveal a strong interaction in the microstructure between the electrochemical properties and the surface properties of the carbon supports, metal loading and ionomer content. This study demonstrates that the colloidal synthesis approach offers interesting potential for systematic studies for the optimization of fuel cell catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective area growth of a-plane GaN nanocolumns by molecular beam epitaxy was performed for the first time on a-plane GaN templates. Ti masks with 150 nm diameter nanoholes were fabricated by colloidal lithography, an easy, fast and cheap process capable to handle large areas. Even though colloidal lithography does not provide a perfect geometrical arrangement like e-beam lithography, it produces a very homogeneous mask in terms of nanohole diameter and density, and is used here for the first time for the selective area growth of GaN. Selective area growth of a-plane GaN nanocolumns is compared, in terms of anisotropic lateral and vertical growth rates, with GaN nanocolumns grown selectively on the c-plane

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-drawn steel rods and wires retain significant residual stresses as a consequence of the manufacturing process. These residual stresses are known to be detrimental for the mechanical properties of the wires and their durability in aggressive environments. Steel makers are aware of the problem and have developed post-drawing processes to try and reduce the residual stresses on the wires. The present authors have studied this problem for a number of years and have performed a detailed characterization of the residual stress state inside cold-drawn rods, including both experimental and numerical techniques. High-energy synchrotron sources have been particularly useful for this research. The results have shown how residual stresses evolve as a consequence of cold-drawing and how they change with subsequent post-drawing treatments. The authors have been able to measure for the first time a complete residual strain profile along the diameter in both phases (ferrite and cementite) of a cold-drawn steel rod.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eutectic rods of Al2O3–Er3Al5O12 were grown by directional solidification using the laser-heated floating zone method at rates in the range 25–1500 mm/h. Their microstructure and mechanical properties (hardness, toughness and strength) were investigated as a function of the growth rate. A homogeneous and interpenetrated microstructure was found in most cases, and interphase spacing decreased with growth rate following the Hunt–Jackson law. Hardness increased slightly as the interphase spacing decreased while toughness was low and independent of the microstructure. The rods presented very high bending strength as a result of the homogeneous microstructure, and their strength increased rapidly as the interphase spacing decreased, reaching a maximum of 2.7 GPa for the rods grown at 750 mm/h. The bending strength remained constant up to 1300 K and decreased above this temperature. The relationship between the microstructure and the mechanical properties was established from the analysis of the microstructure and of the fracture mechanisms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The parameters that control the stability of ZnO-nanoparticles suspensions and their deposition by electrophoretic deposition were studied, so as to organize the assembly and compaction of nanoparticles. The addition of cationic polyelectrolyte - Polyethylenimine (PEI) - with different molecular weights was investigated, in order to study their effectiveness and the influence of the molecular weight of the organic chain on suspensions dispersion. It was found that PEI with the highest molecular weight provided better dispersion conditions. Cathodic EPD was performed under previously optimized suspensions conditions and over electropolished stainless steel substrates. Experimental results showed that the EPD process in these conditions allows obtaining dense transparent ZnO thin films. Deposition times and intensities were optimized by analyzing the resulting thin films characteristics. Finally, the deposits were characterized by FE-SEM, AFM, and different spectroscopic techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A colloidal deposition technique is presented to construct long-range ordered hybrid arrays of self-assembled quantum dots and metal nanoparticles. Quantum dots are promising for novel opto-electronic devices but, in most cases, their optical transitions of interest lack sufficient light absorption to provide a significant impact in their implementation. A potential solution is to couple the dots with localized plasmons in metal nanoparticles. The extreme confinement of light in the near-field produced by the nanoparticles can potentially boost the absorption in the quantum dots by up to two orders of magnitude. In this work, light extinction measurements are employed to probe the plasmon resonance of spherical gold nanoparticles in lead sulfide colloidal quantum dots and amorphous silicon thin-films. Mie theory computations are used to analyze the experimental results and determine the absorption enhancement that can be generated by the highly intense near-field produced in the vicinity of the gold nanoparticles at their surface plasmon resonance. The results presented here are of interest for the development of plasmon-enhanced colloidal nanostructured photovoltaic materials, such as colloidal quantum dot intermediate-band solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semiempirical method for predicting the damping efficiency of hysteresis rods on-board small satellites is presented. It is based on the evaluation of dissipating energy variation of different ferromagnetic materials for two different rod shapes: thin film and circular cross-section rods, as a function of their elongation. Based on this formulation, an optimum design considering the size of hysteresis rods, their cross section shape, and layout has been proposed. Finally, the formulation developed was applied to the case of four existing small satellites, whose corresponding in-flight data are published. A good agreement between the estimated rotational speed decay time and the in-flight data has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation is thought to be an essential first step in the prompt deactivation of photoexcited rhodopsin. In vitro, the phosphorylation can be catalyzed either by rhodopsin kinase (RK) or by protein kinase C (PKC). To investigate the specific role of RK, we inactivated both alleles of the RK gene in mice. This eliminated the light-dependent phosphorylation of rhodopsin and caused the single-photon response to become larger and longer lasting than normal. These results demonstrate that RK is required for normal rhodopsin deactivation. When the photon responses of RK−/− rods did finally turn off, they did so abruptly and stochastically, revealing a first-order backup mechanism for rhodopsin deactivation. The rod outer segments of RK−/− mice raised in 12-hr cyclic illumination were 50% shorter than those of normal (RK+/+) rods or rods from RK−/− mice raised in constant darkness. One day of constant light caused the rods in the RK−/− mouse retina to undergo apoptotic degeneration. Mice lacking RK provide a valuable model for the study of Oguchi disease, a human RK deficiency that causes congenital stationary night blindness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How colloidal particles interact with each other is one of the key issues that determines our ability to interpret experimental results for phase transitions in colloidal dispersions and our ability to apply colloid science to various industrial processes. The long-accepted theories for answering this question have been challenged by results from recent experiments. Herein we show from Monte-Carlo simulations that there is a short-range attractive force between identical macroions in electrolyte solutions containing divalent counterions. Complementing some recent and related results by others, we present strong evidence of attraction between a pair of spherical macroions in the presence of added salt ions for the conditions where the interacting macroion pair is not affected by any other macroions that may be in the solution. This attractive force follows from the internal-energy contribution of counterion mediation. Contrary to conventional expectations, for charged macroions in an electrolyte solution, the entropic force is repulsive at most solution conditions because of localization of small ions in the vicinity of macroions. Both Derjaguin–Landau–Verwey–Overbeek theory and Sogami–Ise theory fail to describe the attractive interactions found in our simulations; the former predicts only repulsive interaction and the latter predicts a long-range attraction that is too weak and occurs at macroion separations that are too large. Our simulations provide fundamental “data” toward an improved theory for the potential of mean force as required for optimum design of new materials including those containing nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Illumination of vertebrate rod photoreceptors leads to a decrease in the cytoplasmic cGMP concentration and closure of cyclic nucleotide-gated (CNG) channels. Except for Ca2+, which plays a negative feedback role in adaptation, and 11-cis-retinal, supplied by the retinal pigment epithelium, all of the biochemical machinery of phototransduction is thought to be contained within rod outer segments without involvement of extrinsic regulatory molecules. Here we show that insulin-like growth factor-I (IGF-I), a paracrine factor released from the retinal pigment epithelium, alters phototransduction by rapidly increasing the cGMP sensitivity of CNG channels. The IGF-I-signaling pathway ultimately involves a protein tyrosine phosphatase that catalyzes dephosphorylation of a specific residue in the α-subunit of the rod CNG channel protein. IGF-I conjointly accelerates the kinetics and increases the amplitude of the light response, distinct from events that accompany adaptation. These effects of IGF-I could result from the enhancement of the cGMP sensitivity of CNG channels. Hence, in addition to long-term control of development and survival of rods, growth factors regulate phototransduction in the short term by modulating CNG channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phosphoprotein phosducin (Pd) regulates many guanine nucleotide binding protein (G protein)-linked signaling pathways. In visual signal transduction, unphosphorylated Pd blocks the interaction of light-activated rhodopsin with its G protein (Gt) by binding to the beta gamma subunits of Gt and preventing their association with the Gt alpha subunit. When Pd is phosphorylated by cAMP-dependent protein kinase, it no longer inhibits Gt subunit interactions. Thus, factors that determine the phosphorylation state of Pd in rod outer segments are important in controlling the number of Gts available for activation by rhodopsin. The cyclic nucleotide dependencies of the rate of Pd phosphorylation by endogenous cAMP-dependent protein kinase suggest that cAMP, and not cGMP, controls Pd phosphorylation. The synthesis of cAMP by adenylyl cyclase in rod outer segment preparations was found to be dependent on Ca2+ and calmodulin. The Ca2+ dependence was within the physiological range of Ca2+ concentrations in rods (K1/2 = 230 +/- 9 nM) and was highly cooperative (n app = 3.6 +/- 0.5). Through its effect on adenylyl cyclase and cAMP-dependent protein kinase, physiologically high Ca2+ (1100 nM) was found to increase the rate of Pd phosphorylation 3-fold compared to the rate of phosphorylation at physiologically low Ca2+ (8 nM). No evidence for Pd phosphorylation by other (Ca2+)-dependent kinases was found. These results suggest that Ca2+ can regulate the light response at the level of Gt activation through its effect on the phosphorylation state of Pd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal gold nanoparticles were synthesized by different procedures affording suspensions with two different mean sizes (2 and 5 nm). Au catalysts were prepared by sol immobilization onto several silica frameworks with different 2D and 3D mesoporosities. The catalysts were tested in styrene oxidation reactions showing excellent efficiency and selectivity. The effect of nanoparticle size and mesoporous framework on the physical and catalytic properties of the final materials was studied. The most selective catalyst was prepared from the 5 nm Au nanoparticles and the more interconnected silica framework (3D mesoporosity).