987 resultados para CHINA SEA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new genus and new species of xanthid crab, Ovatis simplex, is described from the South China Sea. The genus is closest to Liagore but can be distinguished by a suite of carapace and male gonopod characters. The systematic position of Liagore is also considered, and both genera, Liagore and Ovatis, are here referred to the subfamily Xanthinae. Comparisons with the allied genera, Paratergatis and Pulcratis, are also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinct cold tongue has recently been noticed in the South China Sea during the winter monsoon, with the cold tongue temperature minimum occurring in the January or February. This cold tongue shows signi¯cant links with the Maritime Continent's rainfall during the winter period. The cold tongue and its interaction with the Maritime Continent's weather were studied using Reynolds SST data, wind ¯elds from the NCEP{NCAR reanalysis dataset and the quikSCAT dataset. In addition, rainfall from the GOES Precipitation Index (GPI) for the periods 2000 to 2008 was also used. The propagation of the cold tongue towards the south is explained using wind dynamics and the western boundary current. During the period of strong cold tongue, the surface wind is strong and the western boundary current advects the cold tongue to the south. During the period of strong winds the zonal gradient of SST is high [0.5±C (25 km)¡1]. The cold tongue plays an important role in regulating the climate over the Maritime Continent. It creates a zonal/meridional SST gradient and this gradient ultimately leads in the formation of convection. Hence, two maximum precipitation zones are found in the Maritime Continent, with a zone of relatively lower precipitation between, which coincides with the cold tongue's regions. It was found that the precipitation zones have strong links with the intensity of the cold tongue. During stronger cold tongue periods the precipitation on either side of the cold tongue is considerably greater than during weaker cold tongue periods. The features of convection on the eastern and western sides of the cold tongue behave di®erently. On the eastern side convection is preceded by one day with SST gradient, while on the western side it is four days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The East China Sea is a hot area for typhoon waves to occur. A wave spectra assimilation model has been developed to predict the typhoon wave more accurately and operationally. This is the first time where wave data from Taiwan have been used to predict typhoon wave along the mainland China coast. The two-dimensional spectra observed in Taiwan northeast coast modify the wave field output by SWAN model through the technology of optimal interpolation (OI) scheme. The wind field correction is not involved as it contributes less than a quarter of the correction achieved by assimilation of waves. The initialization issue for assimilation is discussed. A linear evolution law for noise in the wave field is derived from the SWAN governing equations. A two-dimensional digital low-pass filter is used to obtain the initialized wave fields. The data assimilation model is optimized during the typhoon Sinlaku. During typhoons Krosa and Morakot, data assimilation significantly improves the low frequency wave energy and wave propagation direction in Taiwan coast. For the far-field region, the assimilation model shows an expected ability of improving typhoon wave forecast as well, as data assimilation enhances the low frequency wave energy. The proportion of positive assimilation indexes is over 81% for all the periods of comparison. The paper also finds that the impact of data assimilation on the far-field region depends on the state of the typhoon developing and the swell propagation direction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regional climate modelling system PRECIS, was run at 25 km horizontal resolution for 150 years (1949-2099) using global driving data from a five member perturbed physics ensemble (based on the coupled global climate model HadCM3). Output from these simulations was used to investigate projected changes in tropical cyclones (TCs) over Vietnam and the South China Sea due to global warming (under SRES scenario A1B). Thirty year climatological mean periods were used to look at projected changes in future (2069-2098) TCs compared to a 1961-1990 baseline. Present day results were compared qualitatively with IBTrACS observations and found to be reasonably realistic. Future projections show a 20-44 % decrease in TC frequency, although the spatial patterns of change differ between the ensemble members, and an increase of 27-53 % in the amount of TC associated precipitation. No statistically significant changes in TC intensity were found, however, the occurrence of more intense TCs (defined as those with a maximum 10 m wind speed > 35 m/s) was found to increase by 3-9 %. Projected increases in TC associated precipitation are likely caused by increased evaporation and availability of atmospheric water vapour, due to increased sea surface and atmospheric temperature. The mechanisms behind the projected changes in TC frequency are difficult to link explicitly; changes are most likely due to the combination of increased static stability, increased vertical wind shear and decreased upward motion, which suggest a decrease in the tropical overturning circulation.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous mesoscale eddies occur each year in the South China Sea (SCS), but their statistical characteristics are still not well documented. A Pacific basin-wide three dimensional physical-biogeochemical model has been developed and the result in the SCS subdomain is used to quantify the eddy activities during the period of 1993-2007. The modeled results are compared with a merged and gridded satellite product of sea level anomaly by using the same eddy identification and tracking method. On average, there are about 32.9 +/- 2.4 eddies predicted by the model and 32.8 +/- 3.4 eddies observed by satellite each year, and about 52% of them are cyclonic eddies. The radius of these eddies ranges from about 46.5 to 223.5 km, with a mean value of 87.4 km. More than 70% of the eddies have a radius smaller than 100 km. The mean area covered by these eddies each year is around 160,170 km(2), equivalent to 9.8% of the SCS area with water depths greater than 1000 m. Linear relationships are found between eddy lifetime and eddy magnitude and between eddy vertical extent and eddy magnitude, showing that strong eddies usually last longer and penetrate deeper than weak ones. Interannual variations in eddy numbers and the total eddy-occupied area indicate that eddy activities in the SCS do not directly correspond to the El Nino-Southern Oscillation events. The wind stress curls are thought to be an important but not the only mechanism of eddy genesis in the SCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation in the South China Sea (SCS) and its seasonal transition. Kuroshio enters ( leaves) the SCS through the southern ( northern) portion of the Luzon Strait. The annually averaged net volume flux through the Luzon Strait is similar to2 Sv into the SCS with seasonal reversals. The inflow season is from May to January with the maximum intrusion of Kuroshio water reaching the western SCS during fall in compensation of summertime surface offshore transport associated with coastal upwelling. From February to April the net transport reverses from the SCS to the Pacific. The intruded Kuroshio often forms an anticyclonic current loop west of the Luzon Strait. The current loop separates near the Dongsha Islands with the northward branch continuously feeding the South China Sea Warm Current (SCSWC) near the shelf break and the westward branch becoming the South China Sea Branch of Kuroshio on the slope, which is most apparent in the fall. The SCSWC appears from December to February on the seaward side of the shelf break, flowing eastward against the prevailing wind. Diagnosis shows that the onshore Ekman transport due to northeasterly monsoon generates upwelling when moving upslope, and the particular distributions of the density and sea level associated with the cross shelf motion supports the SCSWC.