895 resultados para CHEMICAL-REACTIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This overview presents the recent progress in the area of endohedral metallofullerenes in the past several years. The important results have been summarized as follows: (1) Many metals including Group 3 metals, most of the lanthanide series elements, and Group 2 metals have been encapsulated into a fullerene cage to form mono-, di-, and trimetallofullerenes by using the arc-evaporation technique. (2) Some endohedral metallofullerenes such as Group 3 metals, most of the lanthanide series elements, Group 2 metals, and some of their isomers have been successfully isolated and purified by a two-step or several-step HPLC technique. By using high-temperature and high-pressure extraction with pyridine, Ln@C-80, Ln@C-82, and Ln2@C-80 for most rare-earth metals have been selectively extracted in high yield (about 1% of the saw soot) from fullerenes and other size metallofullerenes. (3) The endohedral nature of metallofullerenes such as Y@C-82, Sc2@C-84, and Sc@C-82 has been finally confirmed by synchrotron X-ray powder diffraction. The symmetries and the structures of metallofullerenes such as Ca@C-82(III), La-2@C-80(I-h), Sc-2@C-84(D-2d), and Sc-2@C-84(C-s) have been confirmed by NMR measurements. (Lb) The information on the electronic structures and properties of endohedral metallofullerenes has been obtained by various spectrometric means Such as EPR, W-vis-MR, XPS, CV. It is generally accepted that three-electron transfer is favorable when M = Y, La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er, Lu but Sc, Eu, Sm, Yb, Tm, Ca, Sr, Ba prefer to donate two electrons to the fullerene cages. (5) Several chemical reactions of endohedral metallofullerenes have been reported in which reagents are disilacyclopropane, digermacyclopropane, diphenyldiazomethane, and trifluoroacetic acid. (6) Mass spectrometry provided the crucial evidence that led to the discovery of metallofullerenes in 1985 and has always played a key role in their identification and characterization, Ion-mobility measurements of gas-phase ions have obtained the information of structures and the formation mechanism of endohedral metallofullerenes. till Theoretical calculations on the endohedral metallofullerenes have made an important contribution to the studies on the symmetry of the cage, the position of metal atom(s) inside the cage, the number of electronic transfer between metal atom(s) and fullerene cage, etc. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aimed at saving the radiation dose required to crosslinking the polyamid-1010, BMI/PA1010 systems containing different amounts of difunctional crosslinking agent N,N'-bis-maleimide-4,4'-biphenyl methane (BMI) were prepared and the structure changes at the crystallographic and supermolecular levels before and after irradiation were studied by using WAXD, SAXS, and DSC techniques. It was found that by incorporation of BMI the microcrystal size L-100 is lowered due to the formation of hydrogen bond between the carbonyl oxygen of BMI and the amide hydrogen of PA1010 in the hydrogen bonded plane, and the overall crystallinity W-c is also decreased. The presence of BMI causes the crystal lamella thickness d(c) to decrease and greatly thickens the transition zone d(tr) between the crystalline and amorphous regions. As for the irradiated specimen, the maximum increments in the L-100 and W-c against dose curves decrease with BMI content, and the interception point D-i, at which the L-100 and W-c curves intercept their respective horizontal line of L-100/L-100(0) and W-c/W-c(0)=1, shift to lower dose with an increase in BMI concentration. In addition. the mechanism of the radiation chemical reactions in the three different phases under the action of BMI are discussed with special focus on the interface region. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modification of polypropylene (PP) was accomplished by melt grafting glycidyl methacrylate (GMA) on its molecular chains. The resulting PP-g-GMA was used to prepare binary blends of polyamide 1010 (PA1010) and PP-g-GMA. Different blend morphologies were observed by scanning electron microscopy (SEM) according to the nature and content of PA1010 used. Comparing the PA1010/PP-g-GMA and PA1010/PP binary blends, the size of the domains of PP-g-GMA were much smaller than that of PP at the same compositions. It was found that mechanical properties of PA1010/PP-g-GMA blends were obviously better than that of PA1010/PP blends, and the mechanical properties were significantly influenced by wetting conditions for uncompatibilized and compatibilized blends. A different dependence of the flexural modulus on water was found for PA1010/PP and PA1010/PP-g-GMA. These behaviors could be attributed to the chemical interactions between the two components and good dispersion in PA1010/PP-g-GMA blends. Thermal and rheological analyses were performed to confirm the possible chemical reactions taking place during the blending process. (C) 1997 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The modification of ethylene-propylene copolymer (EP) has been accomplished by radical EP-graft-acrylic acid (EP-g-AA) has been used to obtain ternary PA/EP/EP-g-AA blends by melt mixing. Different blend morphologies were observed by scanning electron microscopy; the domain size of the EP-dispersed phase in the polyamide 1010 matrix of compatibilized blends decreased compared with that of uncompatibilized blends. It is found that EP-g-AA used as the third component has a profound effect on the mechanical properties of the resulting blends. This behavior has been attributed to serious chemical interactions taking place between the two components. Thermal analysis shows that some thermal properties of PA in compatibilized PA/EP/EP-g-AA changed because of chemical reactions taken place during the blending process. Wide angle x-ray diffraction measurements also confirmed this result. (C) 1996 John Wiley & Sons, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical reactions coupled with the phase transfer of Co(Ⅱ) catalyzed by 2,2′ -bipyridine across the water/nitrobenzene interface have been observed by using cyclic voltammetry (CV). Coupled chemical reactions both in the organic phase or in the aqueus phase influence the CV behavior of successive complex phase transfer obviously and an irreversible phenomenon similar to that existed at the metal electrode/electrolyte solution interface was observed. For different complexes, the phase transfer mechanism...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large number of mantle-derived fluid activities occurred in the Dongying Sag. On the basis of the studies on the geochemical characteristics of these fluids in this sag, the spatial distribution of biomarkers in petroleum and their relationships with the parameters of mantle-derived fluids were studied, to reveal the influence of mantle-derived fluids on the biomarkers and to evaluate the reliability of these biomarkers when applied to oil-source correlation and maturity analysis. Most biomarkers used in oil correlation kept the characteristics of their sources during burial thermal evolution. Even some of them were not influenced by mantle derived fluids, such as the relative content of C27-C29 steroid(ααα20R)and C21/C23 tricyclic terpane. However, Pr/Ph and C35/C34 hopanes were sensitive to both heat energy and materiel input by the mantle-derived fluids. γ-waxnae/C30hopanes and C24 tetracyclic terpanes /C26 tricyclic terpanes responded only to thermal influence by mantle-derived fluids. They did not chemically reacted with the mantle-derived fluids. Fluorene series compounds reacted with hydrogen and / or carbon dioxide from the mantle. Mantle-derived fluids affected most maturity index. The huge thermal energy with mantle-devied fluids weakened the relationship between the maturity parameters and depth. Among them, pregnane/C27-29 steroid and Ts/(Ts+Tm) were more sensitive to the heat of the fluids. ααα20S/(20S+20R) took the second place. αββ/(ααα+αββ) and 22S/(22S+22R) were not thermally influenced by the mantle-derived fluid. Besides, the substance of mantle-derived fluids reacted with fragrants, hopanes or moretanoids and thus altered the values of MPI1, MPI2, MPR, C30 hopanes/(C30 hopanes + moretanoids) and alkyl-diben zothiophene/diben zothiophene. The thermal alernation of phenanthrene series and their spatial distribution show that the heat energy carried by mantle-derived fluids was not fierce but spread widely in Dongying Sag, which is favorable to hydrocarbon generation with little destroy. In sum, mantle-derived fluids affected biomarkers through thermal energy and chemical reactions and changed the values of oil-source correlation and maturity parameters in the deep-seated fault belts. Therefore, in the deep-seated fault belts, oil-source correlation should be restudied and the new parameters need to be explored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal oxide clusters of sub-nm dimensions dispersed on a metal oxide support are an important class of catalytic materials for a number of key chemical reactions, showing enhanced reactivity over the corresponding bulk oxide. In this paper we present the results of a density functional theory study of small sub-nm TiO2 clusters, Ti2O4, Ti3O6 and Ti4O8 supported on the rutile (110) surface. We find that all three clusters adsorb strongly with adsorption energies ranging from -3 eV to -4.5 eV. The more stable adsorption structures show a larger number of new Ti-O bonds formed between the cluster and the surface. These new bonds increase the coordination of cluster Ti and O as well as surface oxygen, so that each has more neighbours. The electronic structure shows that the top of the valence band is made up of cluster derived states, while the conduction band is made up of Ti 3d states from the surface, resulting in a reduction of the effective band gap and spatial separation of electrons and holes after photon absorption, which shows their potential utility in photocatalysis. To examine reactivity, we study the formation of oxygen vacancies in the cluster-support system. The most stable oxygen vacancy sites on the cluster show formation energies that are significantly lower than in bulk TiO2, demonstrating the usefulness of this composite system for redox catalysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The demands of the process of engineering design, particularly for structural integrity, have exploited computational modelling techniques and software tools for decades. Frequently, the shape of structural components or assemblies is determined to optimise the flow distribution or heat transfer characteristics, and to ensure that the structural performance in service is adequate. From the perspective of computational modelling these activities are typically separated into: • fluid flow and the associated heat transfer analysis (possibly with chemical reactions), based upon Computational Fluid Dynamics (CFD) technology • structural analysis again possibly with heat transfer, based upon finite element analysis (FEA) techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review of polymer cure models used in microelectronics packaging applications reveals no clear consensus of the chemical rate constants for the cure reactions, or even of an effective model. The problem lies in the contrast between the actual cure process, which involves a sequence of distinct chemical reactions, and the models, which typically assume only one, (or two with some restrictions on the independence of their characteristic constants.) The standard techniques to determine the model parameters are based on differential scanning calorimetry (DSC), which cannot distinguish between the reactions, and hence yields results useful only under the same conditions, which completely misses the point of modeling. The obvious solution is for manufacturers to provide the modeling parameters, but failing that, an alternative experimental technique is required to determine individual reaction parameters, e.g. Fourier transform infra-red spectroscopy (FTIR).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A review of polymer cure models used in microelectronics packaging applications reveals no clear consensus of the chemical rate constants for the cure reactions, or even of an effective model. The problem lies in the contrast between the actual cure process, which involves a sequence of distinct chemical reactions, and the models, which typically assume only one, (or two with some restrictions on the independence of their characteristic constants.) The standard techniques to determine the model parameters are based on differential scanning calorimetry (DSC), which cannot distinguish between the reactions, and hence yields results useful only under the same conditions, which completely misses the point of modeling. The obvious solution is for manufacturers to provide the modeling parameters, but failing that, an alternative experimental technique is required to determine individual reaction parameters, e.g. Fourier transform infra-red spectroscopy (FTIR).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whether a small cell, a small genome or a minimal set of chemical reactions with self-replicating properties, simplicity is beguiling. As Leonardo da Vinci reportedly said, 'simplicity is the ultimate sophistication'. Two diverging views of simplicity have emerged in accounts of symbiotic and commensal bacteria and cosmopolitan free-living bacteria with small genomes. The small genomes of obligate insect endosymbionts have been attributed to genetic drift caused by small effective population sizes (Ne). In contrast, streamlining theory attributes small cells and genomes to selection for efficient use of nutrients in populations where Ne is large and nutrients limit growth. Regardless of the cause of genome reduction, lost coding potential eventually dictates loss of function. Consequences of reductive evolution in streamlined organisms include atypical patterns of prototrophy and the absence of common regulatory systems, which have been linked to difficulty in culturing these cells. Recent evidence from metagenomics suggests that streamlining is commonplace, may broadly explain the phenomenon of the uncultured microbial majority, and might also explain the highly interdependent (connected) behavior of many microbial ecosystems. Streamlining theory is belied by the observation that many successful bacteria are large cells with complex genomes. To fully appreciate streamlining, we must look to the life histories and adaptive strategies of cells, which impose minimum requirements for complexity that vary with niche.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sea-surface layer is the very upper part of the sea surface where reduced mixing leads to strong gradients in physical, chemical and biological properties1. This surface layer is naturally reactive, containing a complex chemistry of inorganic components and dissolved organic matter (DOM), the latter including amino acids, proteins, fatty acids, carbohydrates, and humic-type components,2 with a high proportion of functional groups such as carbonyls, carboxylic acids and aromatic moieties.3 The different physical and chemical properties of the surface of the ocean compared with bulk seawater, and its function as a gateway for molecules to enter the atmosphere or ocean phase, make this an interesting and important region for study. A number of chemical reactions are believed to occur on and in the surface ocean; these may be important or even dominant sources or sinks of climatically-active marine trace gases. However the sea surface, especially the top 1um to 1mm known as the sea surface microlayer (ssm), is critically under-sampled, so to date much of the evidence for such chemistry comes from laboratory and/or modeling studies. This review discusses the chemical and physical structure of the sea surface, mechanisms for gas transfer across it, and explains the current understanding of trace gas formation at this critical interface between the ocean and atmosphere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Green malt was kilned at 95 degrees C following two regimens: a standard regimen (SKR) and a rapid regimen (RKR). Both resulting malts were treated further in a tray dryer heated to 120 degrees C, as was green malt previously dried to 65 degrees C (TDR). Each regimen was monitored by determining the color, antioxidant activity (by both ABTS(center dot+) and FRAP methods), and polyphenolic profile. SKR and RKR malts exhibited decreased L* and increased b* values above approximately 80 degrees C. TDR malts changed significantly less, and color did not develop until 110 degrees C, implying that different chemical reactions lead to color in those malts. Antioxidant activity increased progressively with each regimen, although with TDR malts this became significant only at 110-120 degrees C. The RKR malt ABTS(center dot+) values were higher than those of the SKR malt. The main phenolics, that is, ferulic, p-coumaric, and vanillic acids, were monitored throughout heating. Ferulic acid levels increased upon heating to 80 degrees C for SKR and to 70 degrees C for RKR, with subsequent decreases. However, the levels for TDR malts did not increase significantly. The increase in free phenolics early in kilning could be due to enzymatic release of bound phenolics and/or easier extractability due to changes in the matrix. The differences between the kilning regimens used suggest that further modification of the regimens could lead to greater release of bound phenolics with consequent beneficial effects on flavor stability in beer and, more generally, on human health.