977 resultados para CELLS IN-VITRO
Resumo:
ABSTRACT: BACKGROUND: Conserved Wnt ligands are critical for signalling during development; however, various factors modulate their activity. Among these factors are the Secreted Frizzled-Related Proteins (SFRP). We previously isolated the SFRP-4 gene from an involuting rat mammary gland and later showed that transgenic mice inappropriately expressing SFRP-4 during lactation exhibited a high level of apoptosis with reduced survival of progeny. RESULTS: In order to address the questions related to the mechanism of Wnt signalling and its inhibition by SFRP-4 which we report here, we employed partially-purified Wnt-3a in a co-culture model system. Ectopic expression of SFRP-4 was accomplished by infection with a pBabepuro construct. The co-cultures comprised Line 31E mouse mammary secretory epithelial cells and Line 30F, undifferentiated, fibroblast-like mouse mammary cells. In vitro differentiation of such co-cultures can be demonstrated by induction of the beta-casein gene in response to lactogenic hormones.We show here that treatment of cells with partially-purified Wnt-3a initiates Dvl-3, Akt/PKB and GSK-3beta hyperphosphorylation and beta-catenin activation. Furthermore, while up-regulating the cyclin D1 and connexin-43 genes and elevating transepithelial resistance of Line 31E cell monolayers, Wnt-3a treatment abrogates differentiation of co-cultures in response to the lactogenic hormones prolactin, insulin and glucocorticoid. Cells which express SFRP-4, however, are largely unaffected by Wnt-3a stimulation. Since a physical association between Wnt-3a and SFRP-4 could be demonstrated with immunoprecipitation/Western blotting experiments, this interaction, presumably owing to the Frizzled homology region typical of all SFRPs, explains the refractory response to Wnt-3a which was observed. CONCLUSION: This study demonstrates that Wnt-3a treatment activates the Wnt signalling pathway and interferes with in vitro differentiation of mammary co-cultures to beta-casein production in response to lactogenic hormones. Similarly, in another measure of differentiation, following Wnt-3a treatment mammary epithelial cells could be shown to up-regulate the cyclin D1 and connexin-43 genes while phenotypically they show increased transepithelial resistance across the cell monolayer. All these behavioural changes can be blocked in mammary epithelial cells expressing SFRP-4. Thus, our data illustrate in an in vitro model a mechanism by which SFRP-4 can modulate a differentiation response to Wnt-3a.
Resumo:
The convergent total synthesis of hypermodified epothilone analogs 1 and 2 has been achieved with the stereoselective cyclopropanation of allylic alcohol 17 and ring-closing olefin metathesis with diene 22 as the key steps. In spite of significant structural differences between these analogs and the natural epothilone scaffold, 1 and 2 are potent inducers of tubulin polymerization and inhibit the growth of human cancer cells in vitro with sub-nM IC50 values.
Resumo:
Schmallenberg virus (SBV), an arthropod-borne orthobunyavirus was first detected in 2011 in cattle suffering from diarrhea and fever. The most severe impact of an SBV infection is the induction of malformations in newborns and abortions. Between 2011 and 2013 SBV spread throughout Europe in an unprecedented epidemic wave. SBV contains a tripartite genome consisting of the three negative-sense RNA segments L, M, and S. The virus is usually isolated from clinical samples by inoculation of KC (insect) or BHK-21 (mammalian) cells. Several virus passages are required to allow adaptation of SBV to cells in vitro. In the present study, the porcine SK-6 cell line was used for isolation and passaging of SBV. SK-6 cells proved to be more sensitive to SBV infection and allowed to produce higher titers more rapidly as in BHK-21 cells after just one passage. No adaptation was required. In order to determine the in vivo genetic stability of SBV during an epidemic spread of the virus the nucleotide sequence of the genome from seven SBV field isolates collected in summer 2012 in Switzerland was determined and compared to other SBV sequences available in GenBank. A total of 101 mutations, mostly transitions randomly dispersed along the L and M segment were found when the Swiss isolates were compared to the first SBV isolated late 2011 in Germany. However, when these mutations were studied in detail, a previously described hypervariable region in the M segment was identified. The S segment was completely conserved among all sequenced SBV isolates. To assess the in vitro genetic stability of SBV, three isolates were passage 10 times in SK-6 cells and sequenced before and after passaging. Between two and five nt exchanges per genome were found. This low in vitro mutation rate further demonstrates the suitability of SK-6 cells for SBV propagation.
Resumo:
Recombinant cellulose-binding domain (CBD) derived from the cellulolytic bacterium Clostridium cellulovorans was found to modulate the elongation of different plant cells in vitro. In peach (Prunus persica L.) pollen tubes, maximum elongation was observed at 50 μg mL−1 CBD. Pollen tube staining with calcofluor showed a loss of crystallinity in the tip zone of CBD-treated pollen tubes. At low concentrations CBD enhanced elongation of Arabidopsis roots. At high concentrations CBD dramatically inhibited root elongation in a dose-responsive manner. Maximum effect on root hair elongation was at 100 μg mL−1, whereas root elongation was inhibited at that concentration. CBD was found to compete with xyloglucan for binding to cellulose when CBD was added first to the cellulose, before the addition of xyloglucan. When Acetobacter xylinum L. was used as a model system, CBD was found to increase the rate of cellulose synthase in a dose-responsive manner, up to 5-fold compared with the control. Electron microscopy examination of the cellulose ribbons produced by A. xylinum showed that CBD treatment resulted in a splayed ribbon composed of separate fibrillar subunits, compared with a thin, uniform ribbon in the control.
Resumo:
We have reported previously the isolation and genetic characterization of mutations in the gene encoding the largest subunit of yeast RNA polymerase II (RNAPII), which lead to 6-azauracil (6AU)-sensitive growth. It was suggested that these mutations affect the functional interaction between RNAPII and transcription-elongation factor TFIIS because the 6AU-sensitive phenotype of the mutant strains was similar to that of a strain defective in the production of TFIIS and can be suppressed by increasing the dosage of the yeast TFIIS-encoding gene, PPR2, RNAPIIs were purified and characterized from two independent 6AU-sensitive yeast mutants and from wild-type (wt) cells. In vitro, in the absence of TFIIS, the purified wt polymerase and the two mutant polymerases showed similar specific activity in polymerization, readthrough at intrinsic transcriptional arrest sites and nascent RNA cleavage. In contrast to the wt polymerase, both mutant polymerases were not stimulated by the addition of a 3-fold molar excess of TFIIS in assays of promoter-independent transcription, readthrough or cleavage. However, stimulation of the ability of the mutant RNAPIIs to cleave nascent RNA and to read through intrinsic arrest sites was observed at TFIIS:RNAPII molar ratios greater than 600:1. Consistent with these findings, the binding affinity of the mutant polymerases for TFIIS was found to be reduced by more than 50-fold compared with that of the wt enzyme. These studies demonstrate that TFIIS has an important role in the regulation of transcription by yeast RNAPII and identify a possible binding site for TFIIS on RNAPII.
Resumo:
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.
Resumo:
As human papillomavirus-like particles (HPV-VLP) represent a promising vaccine delivery vehicle, delineation of the interaction of VLP with professional APC should improve vaccine development. Differences in the capacity of VLP to signal dendritic cells (DC) and Langerhans cells (LC) have been demonstrated, and evidence has been presented for both clathrin-coated pits and proteoglycans (PG) in the uptake pathway of VLP into epithelial cells. Therefore, we compared HPV-VLP uptake mechanisms in human monocyte-derived DC and LC, and their ability to cross-present HPV VLP-associated antigen in the MHC class I pathway. DC and LC each took up virus-like particles (VLP). DC uptake of and signalling by VLP was inhibited by amiloride or cytochalasin D (CCD), but not by filipin treatment, and was blocked by several sulfated and non-sulfated polysaccharides and anti-CD16. In contrast, LC uptake was inhibited only by filipin, and VLP in LC were associated with caveolin, langerin, and CD1a. These data suggest fundamentally different routes of VLP uptake by DC and LC. Despite these differences, VLP taken up by DC and LC were each able to prime naive CD8(+) T cells and induce cytolytic effector T cells in vitro. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The adult human intervertebral disc (IVD) is normally avascular. Changes to the extracellular matrix in degenerative disc disease may promote vascularisation and subsequently alter cell nutrition and disc homeostasis. This study examines the influence of cell density and the presence of glucose and serum on the proliferation and survival of IVD cells in 3D culture. Bovine nucleus pulposus (NP) cells were seeded at a range of cell densities (1.25 × 10(5)-10(6) cells/mL) and cultured in alginate beads under standard culture conditions (with 3.15 g/L glucose and 10 % serum), or without glucose and/or 20% serum. Cell proliferation, apoptosis and cell senescence were examined after 8 days in culture. Under standard culture conditions, NP cell proliferation and cluster formation was inversely related to cell seeding density, whilst the number of apoptotic cells and enucleated "ghost" cells was positively correlated to cell seeding density. Increasing serum levels from 10% to 20% was associated with increased cluster size and also an increased prevalence of apoptotic cells within clusters. Omitting glucose produced even larger clusters and also more apoptotic and senescent cells. These studies demonstrate that NP cell growth and survival are influenced both by cell density and the availability of serum or nutrients, such as glucose. The observation of clustered, senescent, apoptotic or "ghost" cells in vitro suggests that environmental factors may influence the formation of these phenotypes that have been previously reported in vivo. Hence this study has implications for both our understanding of degenerative disc disease and also cell-based therapy using cells cultured in vitro.
Resumo:
The avascular nature of the human intervertebral disc (IVD) is thought to play a major role in disc pathophysiology by limiting nutrient supply to resident IVD cells. In the human IVD, the central IVD cells at maturity are normally chondrocytic in phenotype. However, abnormal cell phenotypes have been associated with degenerative disc diseases, including cell proliferation and cluster formation, cell death, stellate morphologies, and cell senescence. Therefore, we have examined the relative influence of possible blood-borne factors on the growth characteristics of IVD cells in vitro.
Resumo:
The aim of these studies was to compare the effect of liposome composition on physico-chemical characteristics and transfection efficacy of cationic liposomes both in vitro and in vivo. Comparison between 4 popularly used cationic lipids, showed 3b-N-(dimethylaminoethyl)carbamate (DC-Chol) to promote the highest transfect levels in cells in vitro with levels being at least 6 times higher than those of 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA). 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and dimethyldioctadecylammonium (DDA) and approximately twice as efficient as dipalmitoyl-trimethylammonium-propane (DPTAP). To establish the role of the helper lipid, DC-Chol liposomes were formulated in combination with either 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) or cholesterol (Chol) (1:1 molar ratio) with and without the addition of phosphatidyl choline. The choice of helper lipid incorporated within the bilayer was found to influence the formation of complexes, their resultant structure and their transfection efficiency in vitro, with SUV-DNA complexes containing optimum levels of DOPE giving higher transfection than those containing cholesterol. The inclusion of PC within the formulation also reduced transfection efficiency in vitro. However, when administered in vivo, SUV-DNA complexes composed of PC:Chol:DC-Chol at a molar ratio of 16:8:4 micromole/ml were the most effective at inducing splenocyte proliferation upon exposure to antigen in comparison to control spleens. These results demonstrate that there is no in vitro/in vivo correlation between the transfection efficacy of these liposome formulations and in vitro transfection in the above cell model cannot be taken as a reliable indicator for in vivo efficacy of DNA vaccines.
Resumo:
International audience
Resumo:
A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.
Resumo:
The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and > 95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (> 90%) for nuclear transfer significantly improved blastocyst yield after cloning.
Resumo:
Dendritic cells (DCs) have been described as initiators and modulators of the immune response. Recently we have shown a predominant production of interleukin-10 cytokine, low levels of interferon-gamma and inefficient T cell proliferation in patients with severe forms of chromoblastomycosis. Chromoblastomycosis starts with subcutaneous inoculation of Fonsecaea pedrosoi into tissue where DCs are the first line of defence against this microorganism. In the present study, the interaction of F. pedrosoi and DCs obtained from patients with chromoblastomycosis was investigated. Our results showed that DCs from patients exhibited an increased expression of human leucocyte antigen D-related (HLA-DR) and co-stimulatory molecules. In the presence of conidia, the expression of HLA-DR and CD86 was up-regulated by DCs from patients and controls. Finally, we demonstrate the reversal of antigen-specific anergy and a T helper type 1 response mediated by DCs incubated with F. pedrosoi conidea.
Resumo:
PNU-87407 and PrNU-88509, beta-ketoamide anthelmintics that are structurally related to each other and to the salicylanilide anthelmintic closantel, exhibit different anthelmintic spectra and apparent toxicity in mammals, The basis for this differential pharmacology was examined in experiments that measured motility and adenosine triphosphate (ATP) levels in larval and adult stages of the gastrointestinal nematode, Haemonchus contortus, and in a vertebrate liver cell line and mitochondria, PNU-87407 and PNU-88509 both exhibited functional cross-resistance with closantel in larval migration assays using closantel-resistant and -sensitive isolates of H, contortus. Each compound reduced motility and,ATP levels in cultured adult H. contortus in a concentration- and time-dependent manner: however, motility was reduced more rapidly by PNU-88509, and ATP levels were reduced by lower concentrations of closantel than the beta-ketoamides. Tension recordings from segments of adult H, contortus showed that PNU-88509 induces spastic paralysis, while PNU-87407 and closantel induce flaccid paralysis of the somatic musculature. Marked differences in the actions of these compounds were also observed in the mammalian preparations. In Chang liver cells, ATP levels were reduced after 3 h exposures to greater than or equal to 0.25 mu M PNU-87407 1 mu M closantel or 10 mu M PNU-88509, Reductions in ATP caused by PNU-88509 were completely reversible, while the effects of closantel and PNU-87407; were irreversible. PNU-87407, closantel and PNU-88509 uncoupled oxidative phosphorylation in isolated rat liver mitochondria, inhibiting the respiratory control index (with glutamate or succinate as substrate) by 50% at concentrations of 0.14, 0.9 and 7.6 mu M respectively.