968 resultados para CELL-MIGRATION
Resumo:
It is not known how naive B cells compute divergent chemoattractant signals of the T-cell area and B-cell follicles during in vivo migration. Here, we used two-photon microscopy of peripheral lymph nodes (PLNs) to analyze the prototype G-protein-coupled receptors (GPCRs) CXCR4, CXCR5, and CCR7 during B-cell migration, as well as the integrin LFA-1 for stromal guidance. CXCR4 and CCR7 did not influence parenchymal B-cell motility and distribution, despite their role during B-cell arrest in venules. In contrast, CXCR5 played a nonredundant role in B-cell motility in follicles and in the T-cell area. B-cell migration in the T-cell area followed a random guided walk model, arguing against directed migration in vivo. LFA-1, but not α4 integrins, contributed to B-cell motility in PLNs. However, stromal network guidance was LFA-1 independent, uncoupling integrin-dependent migration from stromal attachment. Finally, we observed that despite a 20-fold reduction of chemokine expression in virus-challenged PLNs, CXCR5 remained essential for B-cell screening of antigen-presenting cells. Our data provide an overview of the contribution of prototype GPCRs and integrins during naive B-cell migration and shed light on the local chemokine availability that these cells compute.
Resumo:
T-cell migration across the blood-brain barrier is a crucial step in the pathogenesis of EAE, an animal model for MS. Live cell imaging studies demonstrated that P-selectin glycoprotein ligand-1 (PSGL-1) and its endothelial ligands E- and P-selectin mediate the initial rolling of T cells in brain vessels during EAE. As functional absence of PSGL-1 or E/P-selectins does not result in ameliorated EAE, we speculated that T-cell entry into the spinal cord is independent of PSGL-1 and E/P-selectin. Performing intravital microscopy, we observed the interaction of WT or PSGL-1(-/-) proteolipid protein-specific T cells in inflamed spinal cord microvessels of WT or E/P-selectin(-/-) SJL/J mice during EAE. T-cell rolling but not T-cell capture was completely abrogated in the absence of either PSGL-1 or E- and P-selectin, resulting in a significantly reduced number of T cells able to firmly adhere in the inflamed spinal cord microvessels, but did not lead to reduced T-cell invasion into the CNS parenchyma. Thus, PSGL-1 interaction with E/P-selectin is essential for T-cell rolling in inflamed spinal cord microvessels during EAE. Taken together with previous observations, our findings show that T-cell rolling is not required for successful T-cell entry into the CNS and initiation of EAE.
Resumo:
Nuclear translocation, driven by the motility apparatus consisting of the cytoplasmic dynein motor and microtubules, is essential for cell migration during embryonic development. Bicaudal-D (Bic-D), an evolutionarily conserved dynein-interacting protein, is required for developmental control of nuclear migration in Drosophila. Nothing is known about the signaling events that coordinate the function of Bic-D and dynein during development. Here, we show that Misshapen (Msn), the fly homolog of the vertebrate Nck-interacting kinase is a component of a novel signaling pathway that regulates photoreceptor (R-cell) nuclear migration in the developing Drosophila compound eye. Msn, like Bic-D, is required for the apical migration of differentiating R-cell precursor nuclei. msn displays strong genetic interaction with Bic-D. Biochemical studies demonstrate that Msn increases the phosphorylation of Bic-D, which appears to be necessary for the apical accumulation of both Bic-D and dynein in developing R-cell precursor cells. We propose that Msn functions together with Bic-D to regulate the apical localization of dynein in generating directed nuclear migration within differentiating R-cell precursor cells.
Resumo:
Sphingosine-1-phosphate (S1P) is a key lipid regulator of a variety of cellular responses including cell proliferation and survival, cell migration, and inflammatory reactions. Here, we investigated the effect of S1P receptor activation on immune cell adhesion to endothelial cells under inflammatory conditions. We show that S1P reduces both tumor necrosis factor (TNF)-α- and lipopolysaccharide (LPS)-stimulated adhesion of Jurkat and U937 cells to an endothelial monolayer. The reducing effect of S1P was reversed by the S1P1+3 antagonist VPC23019 but not by the S1P1 antagonist W146. Additionally, knockdown of S1P3, but not S1P1, by short hairpin RNA (shRNA) abolished the reducing effect of S1P, suggesting the involvement of S1P3. A suppression of immune cell adhesion was also seen with the immunomodulatory drug FTY720 and two novel butterfly derivatives ST-968 and ST-1071. On the molecular level, S1P and all FTY720 derivatives reduced the mRNA expression of LPS- and TNF-α-induced adhesion molecules including ICAM-1, VCAM-1, E-selectin, and CD44 which was reversed by the PI3K inhibitor LY294002, but not by the MEK inhibitor U0126.In summary, our data demonstrate a novel molecular mechanism by which S1P, FTY720, and two novel butterfly derivatives acted anti-inflammatory that is by suppressing gene transcription of various endothelial adhesion molecules and thereby preventing adhesion of immune cells to endothelial cells and subsequent extravasation.
Resumo:
Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.
Resumo:
Although CD8 T cells are key players in neuroinflammation, little is known about their trafficking cues into the central nervous system (CNS). We used a murine model of CNS autoimmunity to define the molecules involved in cytotoxic CD8 T-cell migration into the CNS. Using a panel of mAbs, we here show that the α4β1-integrin is essential for CD8 T-cell interaction with CNS endothelium. We also investigated which α4β1-integrin ligands expressed by endothelial cells are implicated. The blockade of VCAM-1 did not protect against autoimmune encephalomyelitis, and only partly decreased the CD8(+) T-cell infiltration into the CNS. In addition, inhibition of junctional adhesion molecule-B expressed by CNS endothelial cells also decreases CD8 T-cell infiltration. CD8 T cells may use additional and possibly unidentified adhesion molecules to gain access to the CNS.
Resumo:
Raf Kinase Inhibitor Protein (RKIP) has been identified as a phosphatidylethanolamine-binding protein capable of inhibiting Raf-1 kinase, an enzyme significant in cell proliferation and cancer development. When properly functioning, RKIP can mediate the expression of Raf-1 kinase and help prevent uncontrolled cell division. RKIP also has suggested, but unclear, roles in spindle fiber formation during mitosis, regulation of apoptosis, and cell motility. The Fenteany laboratory in the Chemistry Department identified a new small molecule, named Locostatin, as a cell migration inhibitor in mammalian cells, with RKIP as its primary molecular target. Dictyostelium discoideum possess two RKIP proteins, RKIP-A and RKIP-B. In order to begin to study the function of RKIP in D. discoideum and its role in cell motility, I created a mutant cell line which lacks a functional RKIP-A gene. In this paper, we show that removal of RKIP-A does not affect vegetative motility, but impairs chemotaxis and development in the presence of drug. Interestingly, RKIP-A knockout mutants appear more resistant to drug effects on vegetative motility than wild-type cells. More research is needed to reconcile these seemingly contrasting results, and to better develop a model for RKIP-A’s role in cell motility.
Resumo:
Lipid rafts are small laterally mobile cell membrane structures that are highly enriched in lymphocyte signaling molecules. Lipid rafts can form from the assembly of specialized lipids and proteins through hydrophobic associations from saturated acyl chains. GM1 gangliosides are a common lipid raft component and have been shown to be essential in many T cell functions. Current lipid raft theory hypothesizes that certain aspects of T cell signaling can be initiated from the coalescence of these signaling-enriched lipid rafts to sites of receptor engagement. We have described how the specific aggregation of GM1 lipid rafts can cause a reorganization of cell surface molecular associations which include dynamic associations of β1 integrins with GM1 lipid rafts. These associations had pronounced effects on T cell adhesive and migratory states. We show that GM1 lipid raft aggregation can dramatically inhibit T cell migration and chemotaxis on the extracellular matrix constituent fibronectin. This inhibition of migration function was shown to be dependent on the src kinase Lck and PKC-regulated F-actin polymerization to extending pseudopods. Furthermore, GM1 lipid raft clustering could activate T cell adhesion-strengthening mechanisms. These include an increase in cellular rigidity, the creation of polymerized cortical F-actin structures, the induction of high affinity integrin states, an increase in surface area and symmetry of the contact plane, and resistance to shear flow detachment while adherent to fibronectin. This indicates that GM1 lipid raft aggregation defines a novel stimulus to regulate lymphocyte motility and cellular adhesion which could have important implications in T cell homing mechanisms. ^
Resumo:
Recurrence of Head and Neck Squamous Cell Carcinoma (HNSCC) is common; thus, it is essential to improve the effectiveness and reduce toxicity of current treatments. Proteins in the Src/Jak/STAT pathway represent potential therapeutic targets, as this pathway is hyperactive in HNSCC and it has roles in cell migration, metastasis, proliferation, survival, and angiogenesis. During short-term Src inhibition, Janus kinase (Jak) 2, and signal transducer and activator of transcription (STAT) 3 and STAT5 are dephosphorylated and inactivated. Following sustained Src inhibition, STAT5 remains inactive, but Jak2 and STAT3 are reactivated following their early inhibition. To further characterize the mechanism of this novel feedback pathway we performed several experiments to look at the interactions between Src, Jak2, STAT5 and STAT3. We attempted to develop a non-radioactive kinase assay using purified recombinant Jak2 and Src proteins, but found that phospho-tyrosine antibodies were non-specifically binding to purified recombinant proteins. We then performed in vitro kinase assays (IVKAs) using purified recombinant Jak2, Src, STAT3, and STAT5 proteins with and without Src and Jak2 pharmacologic inhibitors. We also examined the interactions of these proteins in intact HNSCC cells. We found that recombinant Jak2, STAT3, and STAT5 are direct substrates of Src and that recombinant Src, STAT3, and STAT5 are direct substrates of Jak2 in the IVKA. To our knowledge, the finding that Src is a Jak substrate is novel and has not been shown before. In intact HNSCC cells we find that STAT3 can be reactivated despite continuous Src inhibition and that STAT5 continues to be inhibited despite Jak2 reactivation. Also, Jak2 inhibition did not affect Src or STAT5 activity but it did cause STAT3 inhibition. We hypothesized that the differences between the intact cells and the IVKA assays were due to a potential need for binding partners in intact HNSCC cells. One potential binding partner that we examined is the epidermal growth factor receptor (EGFR). We found that EGFR activation caused increased activation of Src and STAT5 but not Jak2. Our results demonstrate that although STAT3 and STAT5 are capable of being Src and Jak2 substrates, in intact HNSCC cells Src predominantly regulates STAT5 and Jak2 regulates STAT3. Regulation of STAT5 by Src may involve interactions between Src and EGFR. This knowledge along with future studies will better define the mechanisms of STAT regulation in HNSCC cells and ultimately result in an ideal combination of therapeutic agents for HNSCC.
Resumo:
Autophagy is an evolutionarily conserved process that functions to maintain homeostasis and provides energy during nutrient deprivation and environmental stresses for the survival of cells by delivering cytoplasmic contents to the lysosomes for recycling and energy generation. Dysregulation of this process has been linked to human diseases including immune disorders, neurodegenerative muscular diseases and cancer. Autophagy is a double edged sword in that it has both pro-survival and pro-death roles in cancer cells. Its cancer suppressive roles include the clearance of damaged organelles, which could otherwise lead to inflammation and therefore promote tumorigenesis. In its pro-survival role, autophagy allows cancer cells to overcome cytotoxic stresses generated the cancer environment or cancer treatments such as chemotherapy and evade cell death. A better understanding of how drugs that perturb autophagy affect cancer cell signaling is of critical importance toimprove the cancer treatment arsenal. In order to gain insights in the relationship between autophagy and drug treatments, we conducted a high-throughput drug screen to identify autophagy modulators. Our high-throughput screen utilized image based fluorescent microscopy for single cell analysis to identify chemical perturbants of the autophagic process. Phenothiazines emerged as the largest family of drugs that alter the autophagic process by increasing LC3-II punctae levels in different cancer cell lines. In addition, we observed multiple biological effects in cancer cells treated with phenothiazines. Those antitumorigenic effects include decreased cell migration, cell viability, and ATP production along with abortive autophagy. Our studies highlight the potential role of phenothiazines as agents for combinational therapy with other chemotherapeutic agents in the treatment of different cancers.
Resumo:
The contraction of the actomyosin cytoskeleton, which is produced by the sliding of myosin II along actin filaments, drives important cellular activities such as cytokinesis and cell migration. To explain the contraction velocities observed in such physiological processes, we have studied the contraction of intact cytoskeletons of Dictyostelium discoideum cells after removing the plasma membrane using Triton X-100. The technique developed in this work allows for the quantitative measurement of contraction rates of individual cytoskeletons. The relationship of the contraction rates with forces was analyzed using three different myosins with different in vitro sliding velocities. The cytoskeletons containing these myosins were always contractile and the contraction rate was correlated with the sliding velocity of the myosins. However, the values of the contraction rate were two to three orders of magnitude slower than expected from the in vitro sliding velocities of the myosins, presumably due to internal and external resistive forces. The contraction process also depended on actin cross-linking proteins. The lack of α-actinin increased the contraction rate 2-fold and reduced the capacity of the cytoskeleton to retain internal materials, while the lack of filamin resulted in the ATP-dependent disruption of the cytoskeleton. Interestingly, the myosin-dependent contraction rate of intact contractile rings is also reportedly much slower than the in vitro sliding velocity of myosin, and is similar to the contraction rates of cytoskeletons (different by only 2–3 fold), suggesting that the contraction of intact cells and cytoskeletons is limited by common mechanisms.
Resumo:
Neuronal migration is a critical phase of brain development, where defects can lead to severe ataxia, mental retardation, and seizures. In the developing cerebellum, granule neurons turn on the gene for tissue plasminogen activator (tPA) as they begin their migration into the cerebellar molecular layer. Granule neurons both secrete tPA, an extracellular serine protease that converts the proenzyme plasminogen into the active protease plasmin, and bind tPA to their cell surface. In the nervous system, tPA activity is correlated with neurite outgrowth, neuronal migration, learning, and excitotoxic death. Here we show that compared with their normal counterparts, mice lacking the tPA gene (tPA−/−) have greater than 2-fold more migrating granule neurons in the cerebellar molecular layer during the most active phase of granule cell migration. A real-time analysis of granule cell migration in cerebellar slices of tPA−/− mice shows that granule neurons are migrating 51% as fast as granule neurons in slices from wild-type mice. These findings establish a direct role for tPA in facilitating neuronal migration, and they raise the possibility that late arriving neurons may have altered synaptic interactions.
Resumo:
Wounding corneal epithelium establishes a laterally oriented, DC electric field (EF). Corneal epithelial cells (CECs) cultured in similar physiological EFs migrate cathodally, but this requires serum growth factors. Migration depends also on the substrate. On fibronectin (FN) or laminin (LAM) substrates in EF, cells migrated faster and more directly cathodally. This also was serum dependent. Epidermal growth factor (EGF) restored cathodal-directed migration in serum-free medium. Therefore, the hypothesis that EGF is a serum constituent underlying both field-directed migration and enhanced migration on ECM molecules was tested. We used immunofluorescence, flow cytometry, and confocal microscopy and report that 1) EF exposure up-regulated the EGF receptor (EGFR); so also did growing cells on substrates of FN or LAM; and 2) EGFRs and actin accumulated in the cathodal-directed half of CECs, within 10 min in EF. The cathodal asymmetry of EGFR and actin staining was correlated, being most marked at the cell–substrate interface and showing similar patterns of asymmetry at various levels through a cell. At the cell–substrate interface, EGFRs and actin frequently colocalized as interdigitated, punctate spots resembling tank tracks. Cathodal accumulation of EGFR and actin did not occur in the absence of serum but were restored by adding ligand to serum-free medium. Inhibition of MAPK, one second messenger engaged by EGF, significantly reduced EF-directed cell migration. Transforming growth factor β and fibroblast growth factor also restored cathodal-directed cell migration in serum-free medium. However, longer EF exposure was needed to show clear asymmetric distribution of the receptors for transforming growth factor β and fibroblast growth factor. We propose that up-regulated expression and redistribution of EGFRs underlie cathodal-directed migration of CECs and directed migration induced by EF on FN and LAM.
Resumo:
Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery.
Resumo:
Integrin-mediated adhesion is a critical regulator of cell migration. Here we demonstrate that integrin-mediated adhesion to high fibronectin concentrations induces a stop signal for cell migration by inhibiting cell polarization and protrusion. On fibronectin, the stop signal is generated through α5β1 integrin-mediated signaling to the Rho family of GTPases. Specifically, Cdc42 and Rac1 activation exhibits a biphasic dependence on fibronectin concentration that parallels optimum cell polarization and protrusion. In contrast, RhoA activity increases with increasing substratum concentration. We find that cross talk between Cdc42 and Rac1 is required for substratum-stimulated protrusion, whereas RhoA activity is inhibitory. We also show that Cdc42 activity is inhibited by Rac1 activation, suggesting that Rac1 activity may down-regulate Cdc42 activity and promote the formation of stabilized rather than transient protrusion. Furthermore, expression of RhoA down-regulates Cdc42 and Rac1 activity, providing a mechanism whereby RhoA may inhibit cell polarization and protrusion. These findings implicate adhesion-dependent signaling as a mechanism to stop cell migration by regulating cell polarity and protrusion via the Rho family of GTPases.