904 resultados para CD8 T lymphocytes
Resumo:
Dissection of the primary and secondary response to an influenza A virus established that the liver contains a substantial population of CD8+ T cells specific for the immunodominant epitope formed by H-2Db and the influenza virus nucleoprotein peptide fragment NP366–374 (DbNP366). The numbers of CD8+ DbNP366+ cells in the liver reflected the magnitude of the inflammatory process in the pneumonic lung, though replication of this influenza virus is limited to the respiratory tract. Analysis of surface phenotypes indicated that the liver CD8+ DbNP366+ cells tended to be more “activated” than the set recovered from lymphoid tissue but generally less so than those from the lung. The distinguishing characteristic of the lymphocytes from the liver was that the prevalence of the CD8+ DbNP366+ set was always much higher than the percentage of CD8+ T cells that could be induced to synthesize interferon γ after short-term, in vitro stimulation with the NP366–374 peptide, whereas these values were generally comparable for virus-specific CD8+ T cells recovered from other tissue sites. Also, the numbers of apoptotic CD8+ T cells were higher in the liver. The results overall are consistent with the idea that antigen-specific CD8+ T cells are destroyed in the liver during the control and resolution phases of this viral infection, though this destruction is not necessarily an immediate process.
Resumo:
Immunodeficiency typically appears many years after initial HIV infection. This long, essentially asymptomatic period contributes to the transmission of HIV in human populations. In rare instances, clearance of HIV-1 infection has been observed, particularly in infants. There are also reports of individuals who have been frequently exposed to HIV-1 but remain seronegative for the virus, and it has been hypothesized that these individuals are resistant to infection by HIV-1. However, little is known about the mechanism of immune clearance or protection against HIV-1 in these high-risk individuals because it is difficult to directly demonstrate in vivo protective immunity. Although most of these high-risk individuals show an HIV-1-specific cell-mediated immune response using in vitro assays, their peripheral blood lymphocytes (PBLs) are still susceptible to HIV infection in tissue culture. To study this further in vivo, we have established a humanized SCID mouse infection model whereby T-, B-, and natural killer-cell defective SCID/beige mice that have been reconstituted with normal human PBLs can be infected with HIV-1. When the SCID/beige mice were reconstituted with PBLs from two different multiply exposed HIV-1 seronegative individuals, the mice showed resistance to infection by two strains of HIV-1 (macrophage tropic and T cell tropic), although the same PBLs were easily infected in vitro. Mice reconstituted with PBLs from non-HIV-exposed controls were readily infected. When the same reconstituted mice were depleted of human CD8 T cells, however, they became susceptible to HIV-1 infection, indicating that the in vivo protection required CD8 T cells. This provides clear experimental evidence that some multiply exposed, HIV-1-negative individuals have in vivo protective immunity that is CD8 T cell-dependent. Understanding the mechanism of such protective immunity is critical to the design and testing of effective prophylactic vaccines and immunotherapeutic regimens.
Resumo:
Defining the rate at which T cells turn over has important implications for our understanding of T lymphocyte homeostasis and AIDS pathogenesis, yet little information on T cell turnover is available. We used the nucleoside analogue bromodeoxyuridine (BrdUrd) in combination with five-color flow cytometric analysis to evaluate T lymphocyte turnover rates in normal and simian immunodeficiency virus (SIV)-infected rhesus macaques. T cells in normal animals turned over at relatively rapid rates, with memory cells turning over more quickly than naive cells. In SIV-infected animals, the labeling and elimination rates of both CD4+ and CD8+ BrdUrd-labeled cells were increased by 2- to 3-fold as compared with normal controls. In normal and SIV-infected animals, the rates of CD4+ T cell BrdUrd-labeling and decay were closely correlated with those of CD8+ T cells. The elimination rate of BrdUrd-labeled cells was accelerated in both naive and memory T lymphocytes in SIV-infected animals. Our results provide direct evidence for increased rates of both CD4+ and CD8+ T cell turnover in AIDS virus infection and have important implications for our understanding of T cell homeostasis and the mechanisms responsible for CD4+ T cell depletion in AIDS.
Resumo:
The murine γ-herpesvirus 68 replicates in epithelial sites after intranasal challenge, then persists in various cell types, including B lymphocytes. Mice that lack CD4+ T cells (I-Ab−/−) control the acute infection, but suffer an ultimately lethal recrudescence of lytic viral replication in the respiratory tract. The consequences of CD4+ T cell deficiency for the generation and maintenance of murine γ-herpesvirus 68-specific CD8+ set now have been analyzed by direct staining with viral peptides bound to major histocompatibility complex class I tetramers and by a spectrum of functional assays. Both acutely and during viral reactivation, the CD8+ T cell responses in the I-Ab−/− group were no less substantial than in the I-Ab+/+ controls. Indeed, virus-specific CD8+ T cell numbers were increased in the lymphoid tissue of clinically compromised I-Ab−/− mice, although relatively few of the potential cytotoxic T lymphocyte effectors were recruited back to the site of pathology in the lung. Thus the viral reactivation that occurs in the absence of CD4+ T cells was not associated with any exhaustion of the virus-specific cytotoxic T lymphocyte response. It seems that CD8+ T cells alone are insufficient to maintain long-term control of this persistent γ-herpesvirus.
Resumo:
The HIV-1 regulatory proteins Rev and Tat are expressed early in the virus life cycle and thus may be important targets for the immune control of HIV-1-infection and for effective vaccines. However, the extent to which these proteins are targeted in natural HIV-1 infection as well as precise epitopes targeted by human cytotoxic T lymphocytes (CTL) remain to be defined. In the present study, 57 HIV-1-infected individuals were screened for responses against Tat and Rev by using overlapping peptides spanning the entire Tat and Rev proteins. CD8+ T cell responses against Tat and Rev were found in up to 19 and 37% of HIV-1-infected individuals, respectively, indicating that these regulatory proteins are important targets for HIV-1-specific CTL. Despite the small size of these proteins, multiple CTL epitopes were identified in each. These data indicate that Tat and Rev are frequently targeted by CTL in natural HIV-1 infection and may be important targets for HIV vaccines.
Resumo:
Lymphocytes from blood or tumors of patients with advanced cancer did not proliferate and produced very low levels of tumor necrosis factor and IFN-γ when cultured with autologous tumor cells. Proliferation and lymphokine production dramatically increased in the presence of beads conjugated with mAbs to CD3 plus mAbs to CD28 and/or CD40, and the lymphocytes destroyed the tumor cells. Expression density of CD3 concomitantly increased from low to normal levels. Furthermore, beads providing a CD3 signal (in combination with CD28 or CD28 plus CD40) gave partial protection against the inhibitory effect of transforming growth factor type β1 on lymphocyte proliferation and production of tumor necrosis factor and IFN-γ. MHC class I-restricted cytolytic T cells lysing autologous tumor cells in a 4-h Cr51 release assay were generated when peripheral blood leukocytes were activated in the presence of autologous tumor cells and anti-CD3/CD28 or anti-CD3/CD28/CD40 beads. Experiments performed in a model system using anti-V-β1 or anti-V-β2 mAbs to activate subsets of T cells expressing restricted T cell receptor showed that lymphocytes previously activated by anti-V-β can respond to CD3 stimulation with vigorous proliferation and lymphokine production while retaining their specificity, also in the presence of transforming growth factor type β1. Our results suggest that T lymphocytes from cancer patients can proliferate and form Th1 type lymphokines in the presence of autologous tumor cell when properly activated, and that antigen released from killed tumor cells and presented by antigen-presenting cells in the cultures facilitates the selective expansion of tumor-directed, CD8+ cytolytic T cells.
Resumo:
The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Vα transcripts (Vα1 and Vα2) and one TCR Vβ transcript (Vβ13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Vα1Vβ13 combination specifically recognized both the HLA-A2+ and HLA-DR1+ target cells, whereas the Vα2Vβ13 combination did not result in a TCR on the cell surface. Thus a single TCRαβ complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.
Resumo:
A small percentage of human T lymphocytes, predominantly CD8+ T cells, express receptors for HLA class 1 molecules of natural killer type (NK-R) that are inhibitory for T-cell antigen receptor (TCR)-mediated functions. In the present study, it is demonstrated that the various NK-R molecules typically expressed by NK cells are also expressed on periheral blood T lymphocytes. These CD3+ NK-R+ cells have a cell surface phenotype typical of memory cells as indicated by the expression of CD45RO and CD29 and by the lack of CD28 and CD45RA. Furthermore, by the combined use of anti-TCR V beta-specific antibodies and a semiquantitative polymerase chain reaction assay, the TCR repertoire in this CD3+ NK-R+ cell subset was found to be skewed; in fact, one or two V beta families were largely represented, and most of the other V beta s were barely detected. In addition, analysis of recombinant clones of the largely represented V beta families demonstrated that these V beta s were oligoclonally or monoclonally expanded.
Resumo:
The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4+ T cells by CD8+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8+ T cells. However, IL-2 induces CD8+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability to IL-2 to induce HIV expression. Five to 25 times fewer CD8+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25+) CD8+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.
Resumo:
Recruitment of antigen-specific tumor-infiltrating lymphocytes (TILs) is a major goal for immunotherapy of malignant tumours. We now describe that T-cell-activating superantigens targeted to a tumor by monoclonal antibodies induced large numbers of pseudospecific TILs and eradication of micrometastases. As a model for tumor micrometastases, syngeneic B16 melanoma cells transfected with the human colon carcinoma antigen C215 were injected intravenously into C57BL/6 mice and therapy with an anti-C215 Fab fragment-staphylococcal enterotoxin A (C215Fab-SEA) fusion protein reacting with the C215 antigen was initiated when visible lung metastases were established. More than 90% reduction of the number of lung metastases was observed when mice carrying 5-day-old established lung metastases were treated with C215Fab-SEA. The antitumor effect of C215Fab-SEA was shown to be T-cell-dependent since no therapeutic effect was seen in T-cell-deficient nude mice. Depletion of T-cell subsets by injection of monoclonal antibody demonstrated that CD8+ cells were the most prominent effector cells although some contribution from CD4+ cells was also noted. C215Fab-SEA treatment induced massive tumor infiltration of CD4+ and CD8+ T cells, while only scattered T cells were observed in untreated tumors. SEA treatment alone induced a slight general inflammatory response in the lung parenchyme, but no specific accumulation of T cells was seen in the tumor. TILs induced by C215Fab-SEA were mainly CD8+ but a substantial number of CD4+ cells were also present. Immunohistochemical analysis showed strong production of the tumoricidal cytokines tumor necrosis factor alpha and interferon gamma in the tumor. Thus, the C215Fab-SEA fusion protein targets effector T lymphocytes to established tumors in vivo and provokes a strong local antitumor immune response.
Resumo:
Human peripheral blood lymphocytes (PBLs) were transduced with a number of recombinant retroviruses including RRz2, an LNL6-based virus with a ribozyme targeted to the human immunodeficiency virus (HIV) tat gene transcript inserted within the 3' region of the neomycin-resistance gene; RASH5, and LNHL-based virus containing an antisense sequence to the 5' leader region of HIV-1 downstream of the human cytomegalovirus promoter; and R20TAR, an LXSN-based virus with 20 tandem copies of the HIV-1 trans-activation response element sequence driven by the Moloney murine leukemia virus long terminal repeat. After G418 selection, transduced PBLs were challenged with the HIV-1 laboratory strain IIIB and a primary clinical isolate of HIV-1, 82H. Results showed that PBLs from different donors could be transduced and that this conferred resistance to HIV-1 infection. For each of the constructs, a reduction of approximately 70% in p24 antigen level relative to the corresponding control-vector-transduced PBLs was observed. Molecular analyses showed constitutive expression of all the transduced genes from the retroviral long terminal repeat, but no detectable transcript was seen from the internal human cytomegalovirus transcript was seen from the internal human cytomegalovirus promoter for the antisense construct. Transduction of, and consequent transgene expression in, PBLs did not impact on the surface expression of either CD4+/CD8+ (measured by flow cytometry) or on cell doubling time (examined by [3H]thymidine uptake). These results indicate the potential utility of these anti-HIV-1 gene therapeutic agents and show the preclinical value of this PBL assay system.
Resumo:
We have investigated the ability of human immunodeficiency virus (HIV)-infected cells to kill uninfected CD4+ lymphocytes. Infected peripheral blood mononuclear cells were cocultured with autologous 51Cr-labeled uninfected cells. Rapid death of the normal CD4-expressing target population was observed following a brief incubation. Death of blood CD4+ lymphocytes occurred before syncytium formation could be detected or productive viral infection established in the normal target cells. Cytolysis could not be induced by free virus, was dependent on gp120-CD4 binding, and occurred in resting, as well as activated, lymphocytes. CD8+ cells were not involved in this phenomenon, since HIV-infected CEMT4 cells (CD4+, CD8- cells) mediated the cytolysis of uninfected targets. Reciprocal isotope-labeling experiments demonstrated that infected CEMT4 cells did not die in parallel with their targets. The uninfected target cells manifested DNA fragmentation, followed by the release of the 51Cr label. Thus, in HIV patients, infected lymphocytes may cause the depletion of the much larger population of uninfected CD4+ cells without actually infecting them, by triggering an apoptotic death.
Resumo:
The epitopes recognized by CD8+ cytotoxic T lymphocytes (CTL) are generated from cytosolic proteins by proteolytic processing. The nature of the influences exerted by the sequences flanking CTL epitopes on these processing events remains controversial. Here we show that each epitope within an artificial polyepitope protein containing nine minimal CD8+ CTL epitopes in sequence was processed and presented to appropriate CTL clones. Natural flanking sequences were thus not required to direct class I proteolytic processing. In addition, unnatural flanking sequences containing other CTL epitopes did not interfere with processing. The ability of every CTL epitope to be effectively processed from a protein containing only CTL epitopes is likely to find application in the construction of recombinant polyepitope CTL vaccines.
Resumo:
4-1BB (CD137) est un membre de la superfamille TNFR qui est impliqué dans la transmission des signaux de survie aux lymphocytes. TRAF1 est une protéine adaptatrice qui est recrutée par 4-1BB et autres TNFRs et est caractérisée par une expression très restreinte aux lymphocytes, cellules dendritiques et certaines cellules épithéliales. TRAF1 est nécessaire pour l’expansion et la survie des cellules T mémoire en présence d'agonistes anti-4-1BB in vivo. De plus, TRAF1 est requise en aval de 4-1BB pour activer (phosphoryler) la MAP kinase Erk impliquée dans la régulation de la molécule pro-apoptotique Bim. Suite à l’activation du récepteur 4-1BB, TRAF1 et ERK sont impliqués dans la phosphorylation de Bim et la modulation de son expression. L’activation et la régulation de TRAF1 et Bim ont un rôle important dans la survie des cellules T CD8 mémoires. Dans cette étude, nous avons utilisé une approche protéomique afin de pouvoir identifier de nouveaux partenaires de liaison de TRAF1. Utilisant cette stratégie, nous avons identifié que LSP1 (Leukocyte Specific Protein 1) est recruté dans le complexe de signalisation 4-1BB de manière TRAF1 dépendante. Une caractérisation plus poussée de l’interaction entre TRAF1 et LSP1 a montré que LSP1 lie la région unique N-terminal de TRAF1 de façon indépendante de la région conservée C-terminal. À l’instar des cellules T déficientes en TRAF1, les cellules T déficientes en LSP1 ne sont pas capables d’activer ERK en aval de 4-1BB et par conséquent ne peuvent pas réguler Bim. Ainsi, TRAF1 et LSP1 coopèrent en aval de 4-1BB dans le but d’activer ERK et réguler en aval les niveaux de Bim dans les cellules T CD8. Selon la littérature, le récepteur 4-1BB n’est pas exprimé à la surface des cellules B murines, mais le récepteur 4-1BB favorise la prolifération et la survie des cellules B humaines. Cependant, il est important d'étudier l'expression du récepteur 4-1BB dans les cellules B murines afin de disposer d'un modèle murin et de prédire la réponse clinique à la manipulation de 4-1BB. En utilisant différentes stimulations de cellules B murines primaires, nous avons identifié que le récepteur 4-1BB est exprimé à la surface des cellules B de souris suite à une stimulation avec le LPS (Lipopolysaccharides). Une caractérisation plus poussée a montré que le récepteur 4-1BB est induit dans les cellules B murines d'une manière dépendante de TLR4 (Toll Like Receptor 4). Collectivement, notre travail a démontré que la stimulation avec le LPS induit l’expression du récepteur 4-1BB à la surface des cellules B murines, menant ainsi à l'induction de TRAF1. De plus, TRAF1 et LSP1 coopèrent en aval de 4-1BB pour activer la signalisation de la Map kinase ERK dans les cellules B murines de manière similaire aux cellules T. Les cellules B déficientes en TRAF1 et les cellules B déficientes en LSP1 ne sont pas en mesure d'activer la voie ERK en aval de 4-1BB et montrent un niveau d’expression du récepteur significativement diminué comparé aux cellules B d’une souris WT. Ainsi, TRAF1 et LSP1 sont nécessaires pour une expression maximale du récepteur 4-1BB à la surface cellulaire de cellules B murines et coopèrent en aval de 4-1BB afin d'activer la cascade ERK dans les cellules B murines.
Resumo:
Virus host evasion genes are ready-made tools for gene manipulation and therapy. In this work we have assessed the impact in vivo of the evasion gene A238L of the African Swine Fever Virus, a gene which inhibits transcription mediated by both NF-κB and NFAT. The A238L gene has been selectively expressed in mouse T lymphocytes using tissue specific promoter, enhancer and locus control region sequences for CD2. The resulting two independently derived transgenic mice expressed the transgene and developed a metastasic, angiogenic and transplantable CD4(+)CD8(+)CD69(-) lymphoma. The CD4(+)CD8(+)CD69(-) cells also grew vigorously in vitro. The absence of CD69 from the tumour cells suggests that they were derived from T cells at a stage prior to positive selection. In contrast, transgenic mice similarly expressing a mutant A238L, solely inhibiting transcription mediated by NF-κB, were indistinguishable from wild type mice. Expression of Rag1, Rag2, TCRβ-V8.2, CD25, FoxP3, Bcl3, Bcl2 l14, Myc, IL-2, NFAT1 and Itk, by purified CD4(+)CD8(+)CD69(-) thymocytes from A238L transgenic mice was consistent with the phenotype. Similarly evaluated expression profiles of CD4(+)CD8(+) CD69(-) thymocytes from the mutant A238L transgenic mice were comparable to those of wild type mice. These features, together with the demonstration of (mono-)oligoclonality, suggest a transgene-NFAT-dependent transformation yielding a lymphoma with a phenotype reminiscent of some acute lymphoblastic lymphomas.