897 resultados para CATCHMENT
Unravelling past flash flood activity in a forested mountain catchment of the Spanish Central System
Resumo:
Flash floods represent one of the most common natural hazards in mountain catchments, and are frequent in Mediterranean environments. As a result of the widespread lack of reliable data on past events, the understanding of their spatio-temporal occurrence and their climatic triggers remains rather limited. Here, we present a dendrogeomorphic reconstruction of past flash flood activity in the Arroyo de los Puentes stream (Sierra de Guadarrama, Spanish Central System). We analyze a total of 287 increment cores from 178 disturbed Scots pine trees (Pinus sylvestris L.) which yielded indications on 212 growth disturbances related to past flash flood impact. In combination with local archives, meteorological data, annual forest management records and highly-resolved terrestrial data (i.e., LiDAR data and aerial imagery), the dendrogeomorphic time series allowed dating 25 flash floods over the last three centuries, with a major event leaving an intense geomorphic footprint throughout the catchment in 1936. The analysis of meteorological records suggests that the rainfall thresholds of flash floods vary with the seasonality of events. Dated flash floods in the 20th century were primarily related with synoptic troughs owing to the arrival of air masses from north and west on the Iberian Peninsula during negative indices of the North Atlantic Oscillation. The results of this study contribute considerably to a better understanding of hazards related with hydrogeomorphic processes in central Spain in general and in the Sierra de Guadarrama National Park in particular.
Resumo:
Non peer reviewed
Resumo:
Acknowledgements We would like to gratefully acknowledge the data provided by SEPA, Iain Malcolm. Mark Speed, Susan Waldron and many MSS staff helped with sample collection and lab analysis. We thank the European Research Council (project GA 335910 VEWA) for funding and are grateful for the constructive comments provided by three anonymous reviewers.
Resumo:
Peer reviewed
Resumo:
This thesis focuses on tectonic geomorphology and the response of the Ken River catchment to postulated tectonic forcing along a NE-striking monocline fold in the Panna region, Madhya Pradesh, India. Peninsular India is underlain by three northeast-trending paleotopographic ridges of Precambrian Indian basement, bounded by crustal-scale faults. Of particular interest is the Pokhara lineament, a crustal scale fault that defines the eastern edge of the Faizabad ridge, a paleotopographic high cored by the Archean Bundelkhand craton. The Pokhara lineament coincides with the monocline structure developed in the Proterozoic Vindhyan Supergroup rocks along the Bundelkhand cratonic margin. A peculiar, deeply incised meander-like feature, preserved along the Ken River where it flows through the monocline, may be intimately related to the tectonic regime of this system. This thesis examines 41 longitudinal stream profiles across the length of the monocline structure to identify any tectonic signals generated from recent surface uplift above the Pokhara lineament. It also investigates the evolution of the Ken River catchment in response to the generation of the monocline fold. Digital Elevation Models (DEM) from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used to delineate a series of tributary watersheds and extract individual stream profiles which were imported into MATLAB for analysis. Regression limits were chosen to define distinct channel segments, and knickpoints were defined at breaks between channel segments where there was a discrete change in the steepness of the channel profile. The longitudinal channel profiles exhibit the characteristics of a fluvial system in transient state. There is a significant downstream increase in normalized steepness index in the channel profiles, as well as a general increase in concavity downstream, with some channels exhibiting convex, over-steepened segments. Normalized steepness indices and uppermost knickpoint elevations are on average much higher in streams along the southwest segment of the monocline compared to streams along the northeast segment. Most channel profiles have two to three knickpoints, predominantly exhibiting slope-break morphology. These data have important implications for recent surface uplift above the Pokhara lineament. Furthermore, geomorphic features preserved along the Ken River suggest that it is an antecedent river. The incised meander-like feature appears to be the abandoned river valley of a former Ken River course that was captured during the evolution of the landscape by what is the present day Ken River.
Resumo:
In this study, the Mean Transit Time and Mixing Model Analysis methods are combined to unravel the runoff generation process of the San Francisco River basin (73.5 km**2) situated on the Amazonian side of the Cordillera Real in the southernmost Andes of Ecuador. The montane basin is covered with cloud forest, sub-páramo, pasture and ferns. Nested sampling was applied for the collection of streamwater samples and discharge measurements in the main tributaries and outlet of the basin, and for the collection of soil and rock water samples. Weekly to biweekly water grab samples were taken at all stations in the period April 2007-November 2008. Hydrometric data, Mean Transit Time and Mixing Model Analysis allowed preliminary evaluation of the processes controlling the runoff in the San Francisco River basin. Results suggest that flow during dry conditions mainly consists of lateral flow through the C-horizon and cracks in the top weathered bedrock layer, and that all subcatchments have an important contribution of this deep water to runoff, no matter whether pristine or deforested. During normal to low precipitation intensities, when antecedent soil moisture conditions favour water infiltration, vertical flow paths to deeper soil horizons with subsequent lateral subsurface flow contribute most to streamflow. Under wet conditions in forested catchments, streamflow is controlled by near surface lateral flow through the organic horizon. Exceptionally, saturation excess overland flow occurs. By absence of the litter layer in pasture, streamflow under wet conditions originates from the A horizon, and overland flow.