1000 resultados para CARBON-DIOXIDE LASER


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A clean process has been developed for the synthesis of p-menthane-3,8-diols from cyclization of citronellal in CO2-H2O medium without any additives. With the addition of CO2, the reaction rate could be enhanced about 6 times for the cyclization of citronellal in H2O, because CO2 dissolved into water and formed carbonic acid inducing an increase of the acidity. Although, the reaction conversion in CO2-H2O is slightly lower compared to that obtained with sulfuric acid as catalyst, CO2-H2O could replace the sulfuric acid at a relative higher reaction temperature. The reaction kinetics studies showed that the hydration of isopulegols to p-menthane-3,8-diols is a reversible reaction. The equilibrium constant and the maximum equilibrium yield obtained in CO2-H2O at a range of CO2 pressures are similar to that with sulfuric acid catalyst.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of single-component cobalt salen complexes, N,N'-bis(salicylidene)-1,2phenylenediamino cobaltIII X(X = Cl (1a), Br (1b), NO3 (1c), CF3COO (1d), BF4 (le), and N3 (If)) (SalphCoX), were prepared for alternating copolymerization of carbon dioxide and propylene oxide(PO) under mild condition. The axial anion X group of the SalenphCoX played important role in tailoring the catalytic activity, polymeric/cyclic carbonate selectivity, as well as stereochemistry of carbonate unit sequence in the polymer chain. SalenphCoX with an electron-withdrawing axial X group (complex 1c) was an ideal catalyst for the copolymerization of CO2 and PO to selectively produce polycarbonate with similar to 99% carbonate linkage and over 81% head-to-tail structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactions of Ln(III) acetate (Ln = Pr and Nd) and a polydentate Schiff-base in a mixture of methanol and acetonitrile resulted in the unprecedented assembly of novel Ln(10) aggregates containing two Ln(5) pentagons templated by mu(5)-CO32-, introduced via spontaneous fixation of atmospheric carbon dioxide. Magnetic analysis using an expression including the ligand field effects and molecular field approximation indicates weak antiferromagnetic coupling between the metal ions. This synthetic approach may represent a promising new route toward the design of new lanthanide clusters and novel multifunctional materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A binary catalyst system of a chiral (R,R)-SalenCo(III)(2,4-dinitrophenoxy) (salen = N,N-bis(3,5-di-tert-butylsalicylidene)-1,2-diphenylethylenediimine) in conjunction with (4-dimethylamino)pyridine (DMAP) was developed to generate the copolymerization of carbon dioxide (CO2) and racemic propylene oxide (rac-PO). The influence of the molar ratio of catalyst components, the operating temperature, and reaction pressure on the yield as well as the molecular weight of polycarbonate were systematically investigated. High yield of turnover frequency (TOF) 501.2 h(-1) and high molecular weight of 70,400 were achieved at an appropriate combination of all variables. The structures of as-prepared products were characterized by the IR, H-1 NMR, C-13 NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100% carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimentally simple and inexpensive catalyst system based on hexabutylguanidinium/ZnBr, has been developed for the coupling of carbon dioxide and epoxides to form cyclic carbonates with significant catalytic activity under mild reaction conditions without using additional organic solvents (e.g. the turnover frequencies (TOF, h(-1)) values as high as 6.6 x 10(3) h(-1) for styrene oxide and 1.01 x 10(4) h(-1) for epichlorohydrin). This catalyst system also offers the advantages of recyclability and reusability. Therefore, it is a very effective, environmentally benign, and simple catalytic process. The special steric and electrophilic characteristics of hexabutylguanidinium bromide ionic liquid result in the prominent performance of this novel catalyst system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst, It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)(3), ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 degreesC in a 8 h reaction period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the thermal degradation of poly(propylene carbonate) (PPC) were investigated with different kinetic methods with data from thermogravimetric analysis under dynamic conditions. The apparent activation energies obtained with different integral methods (Ozawa-Flynn-Wall and Coats-Redfern) were consistent with the values obtained with the Kinssinger method (99.93 kJ/mol). The solid-state decomposition process was a sigmoidal A(3) type in terms of the Coats-Redfern and Phadnis-Deshpande results. The influence of the heating rate on the thermal decomposition temperature was also studied. The derivative thermogravimetry curves of PPC confirmed only one weight-loss step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly alternative copolymer of carbon dioxide and propylene oxide was obtained using a lanthanide trichloroacetates-based ternary catalyst. The rare-earth compound in the ternary catalyst was critical to dramatically raise the yield and molecular weight of the copolymer in addition to maintaining a high alternating ratio of the copolymer. (C) 2001 John Wiley & Sons, Inc.