981 resultados para C-alpha model
Resumo:
Background and Aims: IL28B polymorphisms, interferon (IFN)-gamma inducible protein-10 (IP-10) levels and the homeostasis model assessment of insulin resistance (HOMA-IR) score have been reported to predict rapid (RVR) and sustained (SVR) virological response in chronic hepatitis C (CHC), but it is not known whether these factors represent independent, clinically useful predictors. The aim of the study was to assess factors (including IL28B polymorphisms, IP-10 levels and HOMA-IR score) independently predicting response to therapy in CHC under real life conditions.Methods: Multivariate analysis of factors predicting RVR and SVR in 280 consecutive, treatment-naive CHC patients treated with pegylated IFN alpha and ribavirin in a prospective multicenter study.Results: Independent predictors of RVR were HCV RNA < 400,000 IU/ml (OR11.37; 95% CI 3.03-42.6), rs12980275 AA (vs. AG/GG) (OR 7.09; 1.97-25.56) and IP-10 (OR 0.04; 0.003-0.56) in HCV genotype 1 patients and lower baseline γ-glutamyl-transferase levels (OR = 0.02; 0.0009-0.31) in HCV genotype 3 patients. Independent predictors of SVR were rs12980275 AA (OR 9.68; 3.44-27.18), age < 40 yrs (OR = 4.79; 1.50-15.34) and HCV RNA < 400,000 IU/ml (OR 2.74; 1.03-7.27) in HCV genotype 1 patients and rs12980275 AA (OR = 6.26; 1.98-19.74) and age < 40 yrs (OR 5.37; 1.54-18.75) in the 88 HCV genotype 1 patients without a RVR. RVR was by itself predictive of SVR in HCV genotype 1 patients (32 of 33, 97%; OR 33.0; 4.06-268.32) and the only independent predictor of SVR in HCV genotype 2 (OR 9.0, 1.72-46.99; p=0.009) or 3 patients (OR 7.8, 1.43-42.67; p=0.01).Conclusions: In HCV genotype 1 patients, IL28B polymorphisms, HCV RNA load and IP-10 independently predict RVR. The combination of IL28B polymorphisms, HCV RNA level and age may yield more accurate pretreatment prediction of SVR. HOMA-IR score is not associated with viral response.
Resumo:
Twenty Calomys callosus, Rengger, 1830 (Rodentia-Cricetidae) were studied in the early stage of the acute schistosomal mansoni infection (42nd day). The same number of Swiss Webster mice were used as a comparative standard. Liver and intestinal sections, fixed in formalin-Millonig and embedded in paraffin, were stained with hematoxilin and eosin, PAS-Alcian Blue, pH = 1.0 and 2.5, Lennert's Giemsa, Picrosirius plus polarization microscopy, Periodic acid methanamine silver, Gomori's silver reticulin and resorcin-fuchsin. Immunohistological study (indirect immunofluorescence and peroxidase labeled extravidin-biotin methods) was done with antibodies specific to pro-collagen III, fibronectin, elastin, condroitin-sulfate, tenascin, alpha smooth muscle actin, vimentin and desmin. The hepatic granulomas were small, reaching only 27 of the volume of the hepatic Swiss Webster granuloma. They were composed mainly by large immature macrophages, often filled by schistosomal pigment, characterizing an exsudative-macrophage granuloma type. The granulomas were situated in the parenchyma and in the portal space. They were often intravascular, poor of extracellular matrix components, except fibronectin and presented, sometimes alpha smooth muscle actin and vimentin positive cells. The C. callosus intestinal granulomas were similar to Swiss Webster, showing predominance of macrophages. Therefore, the C. callosus acquire very well the Schistosoma mansoni infection, without developing strong hepatic acute granulomatous reaction, suggesting lack of histopathological signs of hypersensitivity.
Resumo:
The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.
Resumo:
In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Resumo:
BALB/c mice develop aberrant T helper 2 (Th2) responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of interleukin-4 (IL-4) early after infection. Here we demonstrate that the burst of IL-4 mRNA, peaking in draining lymph nodes of BALB/c mice 16 hr after infection, occurs within CD4+ T cells that express V beta 4 V alpha 8 T cell receptors. In contrast to control and V beta 6-deficient BALB/c mice, V beta 4-deficient BALB/c mice were resistant to infection, demonstrating the role of these cells in Th2 development. The early IL-4 response was absent in these mice, and T helper 1 responses occurred following infection. Recombinant LACK antigen from L. major induced comparable IL-4 production in V beta 4 V alpha 8 CD4+ cells. Thus, the IL-4 required for Th2 development and susceptibility to L. major is produced by a restricted population of V beta 4 V alpha 8 CD4+ T cells after cognate interaction with a single antigen from this complex organism.
Resumo:
The intestinal anti-inflammatory effects of two probiotics isolated from breast milk, Lactobacillus reuteri and L. fermentum, were evaluated and compared in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Colitis was induced in rats by intracolonic administration of 10 mg TNBS dissolved in 50% ethanol (0.25 ml). Either L. reuteri or L. fermentum was daily administered orally (5 x 10(8) colony-forming units suspended in 0.5 ml skimmed milk) to each group of rats (n 10) for 3 weeks, starting 2 weeks before colitis induction. Colonic damage was evaluated histologically and biochemically, and the colonic luminal contents were used for bacterial studies and for SCFA production. Both probiotics showed intestinal anti-inflammatory effects in this model of experimental colitis, as evidenced histologically and by a significant reduction of colonic myeloperoxidase activity (P<0.05). L. fermentum significantly counteracted the colonic glutathione depletion induced by the inflammatory process. In addition, both probiotics lowered colonic TNFalpha levels (P<0.01) and inducible NO synthase expression when compared with non-treated rats; however, the decrease in colonic cyclo-oxygenase-2 expression was only achieved with L.fermentum administration. Finally, the two probiotics induced the growth of Lactobacilli species in comparison with control colitic rats, but the production of SCFA in colonic contents was only increased when L. fermentum was given. In conclusion, L. fermentum can exert beneficial immunomodulatory properties in inflammatory bowel disease, being more effective than L. reuteri, a probiotic with reputed efficacy in promoting beneficial effects on human health.
Resumo:
Na,K-ATPase is a potential target for regulatory phosphorylation by protein kinase A and C (PKA and PKC). To identify the phosphorylation sites, we have mutated the alpha 1-subunit of Bufo marinus in a highly conservative PKA and in 20 different PKC consensus sequences. The mutants were expressed in Xenopus oocytes and their phosphorylation capacity tested in homogenates upon stimulation of PKA or PKC. While serine 943 (Ser-943) was identified as a unique target site for PKA, none of the PKC consensus serine or threonine residues are implicated in PKC phosphorylation. Controlled trypsinolysis of phosphorylated alpha-subunits of various purified enzyme preparations and of alpha/beta complexes from oocyte homogenates revealed that PKC phosphorylation was exclusively associated with the N terminus. A fusion protein containing the first 32 amino acids of the Bufo alpha-subunit was phosphorylated in vitro and serine and threonine residues (Thr-15 and Ser-16) in this region were identified by site-directed mutagenesis as the PKC phosphorylation sites. Finally, the Bufo alpha-subunit was phosphorylated by protein kinases in transfected COS-7 cells. In intact cells, PKA stimulation induced phosphorylation exclusively on Ser-943 and PKC stimulation mainly on Thr-15 and Ser-16, which are contained in a novel PKC phosphorylation motif.
Resumo:
Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane alpha-helix that may be involved in intramembrane protein-protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix alpha(0), formed by NS3 residues 12-23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design.
Resumo:
Hepatitis C virus (HCV) infection induces a state of oxidative stress by affecting mitochondrial-respiratory-chain activity. By using cell lines inducibly expressing different HCV constructs, we showed previously that viral-protein expression leads to severe impairment of mitochondrial oxidative phosphorylation and to major reliance on nonoxidative glucose metabolism. However, the bioenergetic competence of the induced cells was not compromised, indicating an efficient prosurvival adaptive response. Here, we show that HCV protein expression activates hypoxia-inducible factor 1 (HIF-1) by normoxic stabilization of its alpha subunit. In consequence, expression of HIF-controlled genes, including those coding for glycolytic enzymes, was significantly upregulated. Similar expression of HIF-controlled genes was observed in cell lines inducibly expressing subgenomic HCV constructs encoding either structural or nonstructural viral proteins. Stabilization and transcriptional activation of HIF-1alpha was confirmed in Huh-7.5 cells harboring cell culture-derived infectious HCV and in liver biopsy specimens from patients with chronic hepatitis C. The HCV-related HIF-1alpha stabilization was insensitive to antioxidant treatment. Mimicking an impairment of mitochondrial oxidative phosphorylation by treatment of inducible cell lines with oligomycin resulted in stabilization of HIF-1alpha. Similar results were obtained by treatment with pyruvate, indicating that accumulation of intermediate metabolites is sufficient to stabilize HIF-1alpha. These observations provide new insights into the pathogenesis of chronic hepatitis C and, possibly, the HCV-related development of hepatocellular carcinoma.
Resumo:
Background: Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by a haematoma within the brain parenchyma resulting from blood vessel rupture and with a poor outcome. In ICH, the blood entry into the brain triggers toxicity resulting in a substantial loss of neurons and an inflammatory response. At the same time, blood-brain barrier (BBB) disruption increases water content (edema) leading to growing intracranial pressure, which in turn worsens neurological outcome. Although the clinical presentation is similar in ischemic and hemorrhagic stroke, the treatment is different and the stroke type needs to be determined beforehand by imaging which delays the therapy. C-Jun N-terminal kinases (JNKs) are a family of kinases activated in response to stress stimuli and involved in several pathways such as apoptosis. Specific inhibition of JNK by a TAT-coupled peptide (XG-102) mediates strong neuroprotection in several models of ischemic stroke in rodents. Recently, we have observed that the JNK pathway is also activated in a mouse model of ICH, raising the question of the efficacy of XG-102 in this model. Method: ICH was induced in the mouse by intrastriatal injection of bacterial collagenase (0,1 U). Three hours after surgery, animals received an intravenous injection of 100 mg/kg of XG-102. The neurological outcome was assessed everyday until sacrifice using a score (from 0 to 9) based on 3 behavioral tests performed daily until sacrifice. Then, mice were sacrificed at 6 h, 24 h, 48 h, and 5d after ICH and histological studies performed. Results: The first 24 h after surgery are critical in our ICH mice model, and we have observed that XG-102 significantly improves neurological outcome at this time point (mean score: 1,8 + 1.4 for treated group versus 3,4+ 1.8 for control group, P<0.01). Analysis of the lesion volume revealed a significant decrease of the lesion area in the treated group at 48h (29+ 11mm3 in the treated group versus 39+ 5mm3 in the control group, P=0.04). XG-102 mainly inhibits the edema component of the lesion. Indeed, a significant inhibition Journal of Cerebral Blood Flow & Metabolism (2009) 29, S490-S493 & 2009 ISCBFM All rights reserved 0271-678X/09 $32.00 www.jcbfm.com of the brain swelling was observed in treated animals at 48h (14%+ 13% versus 26+ 9% in the control group, P=0.04) and 5d (_0.3%+ 4.5%versus 5.1+ 3.6%in the control group, P=0.01). Conclusions: Inhibition of the JNK pathway by XG- 102 appears to lead to several beneficial effects. We can show here a significant inhibition of the cerebral edema in the ICH model providing a further beneficial effect of the XG-102 treatment, in addition to the neuroprotection previously described in the ischemic model. This result is of interest because currently, clinical treatment for brain edema is limited. Importantly, the beneficial effects observed with XG-102 in models of both stroke types open the possibility to rapidly treat stroke patients before identifying the stroke subtype by imaging. This will save time which is precious for stroke outcome.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has been only poorly characterized to date. It is believed to comprise a cytosolic N-terminal part, a central part harboring four transmembrane passages, and a cytosolic C-terminal part. Here, we describe an amphipathic alpha-helix at the C terminus of NS4B (amino acid residues 229 to 253) that mediates membrane association and is involved in the formation of a functional HCV replication complex.
Resumo:
Longitudinal studies on the kinetics of viral antigen specific CD8 T cell responses have led to a model whereby a relatively small subset of the primary effector CD8 T cells expanding after the first week of acute viral infection initiate a program of cell survival and differentiation into long lived memory T cells. These T cells are then critical for maintaining protective immunity to subsequent viral infection. Recent observations, using fluorescent tetramers of the MHC class Ib molecule TL, link transient expression of CD8alphaalpha homodimers on expanding primary effector CD8 T cells to the generation of memory cells. At present it is controversial what the role of CD8alphaalpha is in the generation of memory CD8 T cells. The involvement of the high affinity CD8alphaalpha ligand, the TL molecule, is not understood either. However, evidence from two viral infection models in mice, including one paper in this issue of the European Journal of Immunology, suggest a role for CD8alphaalpha in this process and call for additional research focus into these issues.
Resumo:
Objectives: Considering the large inter-individual differences in the function of the systems involved in imatinib disposition, exposure to this drug can be expected to vary widely among patients. Among those known systems is alpha-1-acid glycoprotein (AGP), a circulating protein that strongly binds imatinib. This observational study aimed to explore the influence of plasma AGP on imatinib pharmacokinetics. Methods: A population pharmacokinetic analysis was performed using NONMEM based on 278 plasma samples from 51 oncologic patients, for whom both total imatinib and AGP plasma concentrations were measured. The influence of this biological covariate on oral clearance and volume of distribution was examined. Results: A one-compartment model with first-order absorption appropriately described the data. A hyperbolic relationship between plasma AGP levels and oral clearance, as well as volume of distribution was observed. A mechanistic approach was built up, postulating that only the unbound imatinib concentration was able to undergo first-order elimination through an unbound clearance process, and integrating the dissociation constant as a parameter in the model. This approach allowed determining an average (± SEM) free clearance of 1310 (± 172) L/h and a volume of distribution of 301 (± 23) L. By comparison, the total clearance previously determined was 14 (± 1) L/h. Free clearance was affected by body weight and pathology diagnosis. Moreover, this model provided consistent estimates of the association constant between imatinib and AGP (5.5?106 L/mol) and of the average in vivo free fraction of imatinib (1.1%). The variability observed (17% for free clearance and 66% for volume of distribution) was less than the one previously reported without considering AGP impact. AGP explained indeed about one half of the variability observed in total imatinib disposition. Conclusion: Such findings clarify in part the in vivo impact of protein binding on imatinib disposition and might raise again the question whether high levels of AGP could represent a resistance factor to imatinib. This remains however questionable, as it is not expected to affect free drug concentrations. On the other hand, would imatinib be demonstrated as a drug requiring therapeutic drug monitoring, either the measurement of free concentration or the correction of the total concentration by the actual AGP plasma levels should be considered for accurate interpretation of the results.