931 resultados para Bridged Bis-dioxines
Resumo:
Supercritical carbon dioxide is used to prepare aerogels of two reference molecular organogelators, 2,3-bis-n-decyloxyanthracene (DDOA) (luminescent molecule) and 12-hydroxystearic acid (HSA). Electron microscopy reveals the fibrillar morphology of the aggregates generated by the protocol. SAXS and SANS measurements show that DDOA aerogels are crystalline materials exhibiting three morphs: (1) arrangements of the crystalline solid (2D p6m), (2) a second hexagonal morph slightly more compact, and (3) a packing specific of the fibers in the gel. Aggregates specific of the aerogel (volume fraction being typically phi approximate to 0.60) are developed over larger distances (similar to 1000 angstrom) and bear fewer defaults and residual strains than aggregates in the crystalline and gel phases. Porod, Scherrer and Debye-Bueche analyses of the scattering data have been performed. The first five diffraction peaks show small variations in position and intensity assigned to the variation of the number of fibers and their degree of vicinity within hexagonal bundles of the related SAFIN according to the Oster model. Conclusions are supported by the guidelines offered by the analysis of the situation in HSA aerogels for which the diffraction pattern can be described by two coexisting lamellar-like arrangements. The porosity of the aerogel, as measured by its specific surface extracted from the scattering invariant analysis, is only 1.8 times less than that of the swollen gel and is characteristic of a very porous material.
Resumo:
A tripod ligand possessing two pyridine moieties and a phenolato group as pendants forms a mononuclear complex with an axial copper(II)–phenolate co-ordination in a square-pyramidal environment.
Resumo:
A new class of photo-cross-linkable main-chain liquid crystalline polymers (PMCLCPs) containing bis(benzylidene)cycloallranone groups have been synthesized and studied for their liquid crystalline and photochemical properties. The bis(benzylidene)cycloalkanone group in the chain functions both as a mesogen and as a photoreactive center. All of the polymers exhibit a nematic mesophase. Two kinds of photoreactions, namely, photoisomerization and photo-cross-linking, operate in these polymers. Above Tu at the initial stages of irradiation, photoisomerization predominates the cross-linking, which resulta in the disruption of the chromophore aggregates. Below T8, because of the restricted mobility of the chains, only cross-linking takes place. Studies on the model compound, bis(benzylidene)cyclopentanone, confii the above observations and demonstrate further that the cross-linking proceeds by the 2r + 2r cycloaddition reaction of the bis(benzylidene)cycloallranone moieties. The cross-linking rate decreases with increase in the size of the cycloalkanone ring. Heating the solution cast polymer fii results in the ordered aggregation of the chromophores just above TI and also at the crystal to crystal transition temperature, which facilitates the phobcross-linking reactions. In the isotropic phase, the random orientation of the chromophores drastically curtails the cross-linking rata
Resumo:
Reactions of the bis(3,5-dimethylpyrazolyl)cyclotriphosphazene derivatives gem-N3P3(MeNCH(2)CH(2)O)(2)(dmp)(2) (1) and nongeminal cis-N3P3(OPh)(4)(dmp)(2) (2) with PdCl2 afford complexes of the type [PdCl2.(L)] (L = 1 or 2). In these complexes, the phosphazenes act as bidentate NN-donor ligands with the two pyrazolyl pyridinic nitrogen atoms bonded to the metal, thus forming a six- and an eight-membered chelate ring, respectively. The structures of 2 and [PdCl2.(2)] (4) have been confirmed by single-crystal X-ray diffraction. Crystal data for 2: a = 16.759(2) Angstrom, b = 10.788(3) Angstrom, c = 19.635(9) Angstrom, beta = 101.61(3)degrees, P2(1/c), Z = 4, R = 0.038 for 4688 reflections with F > 5 sigma(F). Crystal data for 4: a = 9.701(3) Angstrom, b = 24.853(4) Angstrom, c = 15.794(4) Angstrom, beta = 101.46(2)degrees, P2(1/n), Z = 4, R = 0.030 for 5416 reflections with F > 5 sigma(F).
Resumo:
Reaction of [Ru2O(O2CR)2(MeCN)4(PPh3)2](ClO4)2 (1) with 1,2-diaminoethane (em) in MeOH---H2O yielded a mixture of products, from which a purple diamagnetic and 1:2 electrolytic diruthenium(III) complex, [Ru2O(O2CR)2(en)2(PPh3)2](ClO4)2 (2), was isolated along with a trace by-product of [Ru2O(O2CR)2(en)2(PPh3)2](ClO4)(MeCONH) (3) (R = C6H4-p-X : X = H, a; OMe, b; Me, c). Complex 3b has been characterized by X-ray diffraction analysis. The structure shows the presence of a (Ru2(?-O)(?-O2CR)22+)_core, with the metal centre bonded to an unidentate PPh3 and a bidentate chelating en terminal ligand. The Ru�Ru distance and the Ru�O�Ru angle in the core are 3.255(3) Å and 119.1(4)°. The amidate anion, formed presumably by nucleophilic attack of OH? on the MeCN ligand in complex 1, remains uncoordinated to the metal. In MeCN/0.1 M [NBun4]ClO4 complex 2 exhibits a nearly reversible Ru2III,III?Ru2III,IV couple near 0.9 V and an irreversible Ru2III,III?Ru2III,II process at ?0.6 V (vs S.C.E.). The mechanistic aspects of the substitution and nucleophilic reactions in the formation of complexes 2 and 3 are discussed. References
Resumo:
Blue coloured, unstable, essentially diamagnetic and non-electrolytic diruthenium(III) complexes of the formation [Ru2O(O2CR)4(en)2(PPh3)2] were prepared by reacting [Ru2O(O2CR)4(PPh3)2] with 1,2-diaminoethane (en) in CH2Cl2 (R = C6H4-p-X; X = H, Me and OMe). The molecular structure of the complexes is proposed as [{(?1-O2CR)(?1-en)(PPH3)Ru}2(?-O)(?-O2CR)2] based on the 1H NMR spectral data. The electronic spectra of the complexes display a band near 569 nm with a shoulder at 630 nm. In CH2Cl2-0.1 M [Bun4N]ClO4, the complexes exhibit redox couples Ru2III,III/Ru2III,IV and Ru2III,IV/Ru2IV,IV near 0.1 and 1.2 V (vs SCE), respectively. The potentials are the lowest among diruthenium(III) complexes with a similar core structure.
Resumo:
Mononuclear Group 6 metal tetracarbonyl complexes containing a cyclodiphosphazane ligand, [PhNP(OC(6)H(4)Me-p)](2) (L), have been used as synthons to prepare homo- and hetero-bimetallic complexes in which the cyclodiphosphazane bridges the two metal centres in its cis or trans isomeric forms. The dimolybdenum complex [Mo-2(eta(5)-C5H5)(2)(CO)(4)(mu-L)] has also been synthesized. The trends in P-31 NMR chemical shifts and the structural features as revealed by X-ray crystallography are discussed.
Resumo:
Reactions of the bis(3,5-dimethylpyrazol-1-yl)cyclotriphosphazenes gem-N3P3Ph4(C3HN2Me2)2 (L1) and N3P3(MeNCH2CH2O)2(C3HN2Me2)2 (L2) with [M(CO)6] (M = Mo or W) afford complexes of the type [M(CO)3L] (L = L1 or L2), which have been characterised by IR and NMR spectroscopic data. The structures of [Mo(CO)3L1], [W(CO)3L2] and the ligand L2 have been determined by single-crystal X-ray diffraction. The phosphazenes act as novel tridentate NNN-donor ligands with two pyrazolyl nitrogen atoms and one phosphazene ring nitrogen atom bonded to the metal atom
Resumo:
Barium metazirconate (BaZrO3) fine powder has been produced by thermally decomposing a molecular precursor, barium bis(citrato)oxozirconate(IV) tetrahydrate at about 700-degrees-C. The precursor, Ba[ZrO(C6H6O7)2] . 4H2O (BZO) has been synthesized and characterized by employing a combination of spectroscopic and thermoanalytical techniques. The precursor undergoes thermal decomposition in three major stages: (i) dehydration to give an anhydrous barium zirconyl citrate, (ii) decomposition of the anhydrous citrate in a multistep process to form an ionic oxycarbonate intermediate, Ba2Zr2O5CO3, and (iii) decomposition of the oxycarbonate to produce BaZrO3 fine powder. The particle size of the resultant BaZrO3 is about 0.2 mum, and the surface area is found to be 4.0 m2 g-1.
Resumo:
The Cu atoms in aquabis(tert-butyl acetoacetato)copper(II),[Cu(C8H13O3)(2)(H2O)], and bis(dipivaloylmethanido)copper(II), [Cu(C11H19O2)(2)], adopt square-pyramidal and planar conformations, respectively, with average Cu--O distances of 1.933 Angstrom in the former (not including the water ligand) and 1.892 Angstrom in the latter. It is interesting to note that the lability of the tert-butyl and methyl groups in both structures, which renders even the location of the terminal C atoms difficult, is reduced at T = 130 K, enabling location of all the protons in the difference Fourier map.
Resumo:
The linear quadridentate ligand N,N'-bis(benzimidazoI-2-ylethyl)ethane-l,2-diamine (L') and its 1 - methylbenzimidazole analogue (L2) and homologues form 1 : 1 complexes with Cu(CIO,),; L' also forms complexes of the types CuL'X, where X = NO,, PF,, Br or CI and CuL'(X)Y where X = CI or Br and Y = CIO, or Br. Deep blue CuL1Br,*2H20 crystallizes in the monoclinic space group C2/c with Z = 4, a = 9.91 9(2), b = 16.626(3), c = 14.1 02(3) le\ and p = 94.39(2)". The structure was solved by Patterson and Fourier difference methods and refined by the least-squares technique to R = 0.064 for 2195 independent reflections with / > 1.50(/). The molecule lies on a two-fold axis symmetrically around Cu". The co-ordination around Cu" is found to be square planar with two amino nitrogens and two benzimidazole nitrogens forming the equatorial plane [CU-N 1.983(3) and 2.037(4) A]. The bromides are at longer distances [3.349(1) A] in axial sites. Ligand field and EPR spectra indicate that one bromide or chloride ion is axially co-ordinated to Cu" in [CuL1l2+. This ion exhibits quasi-reversible redox behaviour. Electrochemical studies of the dihalides in methanol have established the presence of [CuL'X,], [CuL'(X)]+ and [CuL'I2+ in equilibrium. In complexes with 565 [CuL4I2+ [L4 = N,Nbis( benzimidazol-2-ylmethyl)ethane-l,2-diamine] and 555 [CuL3] [L3 = N,N'-bis(1 -methylbenzimidazol- 2-ylmethyl)propane-l,3-diamine] chelate rings, Cull does not seem to lie in the N, square plane, as revealed by their low A values and irreversible electrochemical behaviour. The Cu"-Cu' redox potentials in methanol are in the order [CuL1I2+ < [CuL3I2+ < [CuL4I2+; this illustrates that sixmembered chelate rings are suitable to stabilize Cu", when CU-N 0 interactions are favourable.
Resumo:
The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.
Resumo:
Fluorescent zinc complexes have recently attracted a lot of interest owing to their vast applications in cellular imaging. We report the synthesis as well as physical, chemical and biological studies of a novel zinc glyoxalbis(4-methyl-4-phenyl-3-thiosemicarbazone), Zn (GTSC)](3), complex. As compared with the well-studied zinc biacetylbis(4-methyl-3-thiosemicarbazone), Zn(ATSM), complex, which was used as a reference, Zn(GTSC)](3) had 2.5-fold higher fluorescence. When cellular fluorescence was measured using flow cytometry, we observed that Zn(GTSC)](3) had 3.4-fold to 12-fold higher fluorescence than Zn(ATSM) in various cell lines (n = 9) of different tissue origin. Confocal fluorescence microscopy results showed that Zn(GTSC)](3) appeared to have a nuclear localization within 30 mm of addition to MCF7 cells. Moreover, Zn(GTSC)](3) showed minimal cytotoxicity compared with Zn(ATSM), suggesting that Zn(GTSC)](3) may be less deleterious to cells when used as an imaging agent. Our data suggest that the novel Zn(GTSC)](3) complex can potentially serve as a biocompatible fluorescent imaging agent for live cells.
Resumo:
A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.