985 resultados para Brackish water parasites


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parts of a projected work entitled "The fauna of Scotland; with special reference to Clydesdale and the western district" were issued with the Proceedings as follows: with v. 3, p. 3, 1878, Hymenoptera, pt. I [By Peter Cameron. 1878] 52 p. ; with v. 4, pt. 1, 1880, Mammalia. By E.R. Alston. 1880. 1 p. l., 39 p.; with v. 4, pt. 1, 1880, Fresh and brackish-water Ostracoda. By David Robertson. 1880. 1 p. l., 35 p. ; with new ser., v. 1, pt. 2, 1886, Hymenoptera, pt. II. By Peter Cameron. 1886. 2 p. l., [53]-95 p.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland in summer 2012. During the second half of the experiment, dimethylsulphide (DMS) concentrations in the highest fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 % and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 pmol L-1 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 pmol L-1 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl-? concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (± 0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (± 0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1) and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both Phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high CO2, low pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After this upwelling, DMS concentrations declined, but halocarbon concentrations remained similar or increased compared to measurements prior to the change in conditions. Based on our findings, with future acidification of Baltic Sea waters, biogenic halocarbon emissions are likely to remain at similar values to today, however emissions of biogenic sulphur could significantly decrease from this region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this paper is to identify and evaluate potential areas of technical improvement to solar-powered desalination systems that use reverse osmosis (RO). We compare ideal with real specific energy consumption (SEC) to pinpoint the causes of inefficiency. The ideal SEC is compared among different configurations including a batch system driven by a piston, and continuous systems with single or multiple stages with or without energy recovery in each case. For example, to desalinate 1 m3 of freshwater from normal seawater (osmotic pressure 27 bar) will require at least 0.94 kWh of solar energy; thus in a sunny coastal location, up to 1850 m3 of water per year per m2 (m3/m2) of land covered by solar collectors could theoretically be desalinated. For brackish water (osmotic pressure 3 bar), 11570 m3/m2 of fresh water could theoretically be obtained under the same conditions. These ideal values are compared with practically achieved values reported in the literature. The practical energy consumption is found to be typically 40-200 times higher depending on feed water composition, system configuration and energy recovery. For state-of-the-art systems, energy losses at the various steps in the conversion process are quantified and presented with the help of Sankey diagrams. Improvements that could reduce the losses are discussed. Consequently, recommendations for areas of R&D are highlighted with particular reference to emerging technologies. It is concluded that there is considerable scope to improve the efficiency of solar-powered RO system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desalination of brackish groundwater (BW) is an effective approach to augment water supply, especially for inland regions that are far from seawater resources. Brackish water reverse osmosis (BWRO) desalination is still subject to intensive energy consumption compared to the theoretical minimum energy demand. Here, we review some of the BWRO plants with various system arrangements. We look at how to minimize energy demands, as these contribute considerably to the cost of desalinated water. Different configurations of BWRO system have been compared from the view point of normalized specific energy consumption (SEC). Analysis is made at theoretical limits. The SEC reduction of BWRO can be achieved by (i) increasing number of stages, (ii) using an energy recovery device (ERD), or (iii) operating the BWRO in batch mode or closed circuit mode. Application of more stages not only reduces SEC but also improves water recovery. However, this improvement is less pronounced when the number of stages exceeds four. Alternatively and more favourably, the BWRO system can be operated in Closed Circuit Desalination (CCD) mode and gives a comparative SEC to that of the 3-stage system with a recovery ratio of 80%. A further reduction of about 30% in SEC can be achieved through batch-RO operation. Moreover, the costly ERDs and booster pumps are avoided with both CCD and batch-RO, thus furthering the effectiveness of lowering the costs of these innovative approaches. © 2012 by the authors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambient T. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers. N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays of T. testudinum tissue N:P ratios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Nin˜o events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the ‘‘white zone’’ freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coastal ecosystems around the world are constantly changing in response to interacting shifts in climate and land and water use by expanding human populations. The development of agricultural and urban areas in South Florida significantly modified its hydrologic regime and influenced rates of environmental change in wetlands and adjacent estuaries. This study describes changes in diatom species composition through time from four sediment cores collected across Florida Bay, for the purposes of detecting periods of major shifts in assemblage structure and identifying major drivers of those changes. We examined the magnitude of diatom assemblage change in consecutive 2-cm samples of the 210Pb-dated cores, producing a record of the past ~130 years. Average assemblage dissimilarity among successive core samples was ~30%, while larger inter-sample and persistent differences suggest perturbations or directional shifts. The earliest significant compositional changes occurred in the late 1800s at Russell Bank, Bob Allen Bank and Ninemile Bank in the central and southwestern Bay, and in the early 1900s at Trout Cove in the northeast. These changes coincided with the initial westward redirection of water from Lake Okeechobee between 1881 and 1894, construction of several canals between 1910 and 1915, and building the Florida Overseas Railroad between 1906 and 1916. Later significant assemblage restructurings occurred in the northeastern and central Bay in the late 1950s, early 1960s and early 1970s, and in the southwestern Bay in the 1980s. These changes coincide with climate cycles driving increased hurricane frequency in the 1960s, followed by a prolonged dry period in the 1970s to late 1980s that exacerbated the effects of drainage operations in the Everglades interior. Changes in the diatom assemblage structure at Trout Cove and Ninemile Bank in the 1980s correspond to documented eutrophication and a large seagrass die-off. A gradual decrease in the abundance of freshwater to brackish water taxa in the cores over ~130 years implies that freshwater deliveries to Florida Bay were much greater prior to major developments on the mainland. Salinity, which was quantitatively reconstructed at these sites, had the greatest effect on diatom communities in Florida Bay, but other factors—often short-lived, natural and anthropogenic in nature—also played important roles in that process. Studying the changes in subfossil diatom communities over time revealed important environmental information that would have been undetected if reconstructing only one water quality variable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the relationships between hydrology and salinity and plant community structure and production is critical to allow predictions of wetland responses to altered water management, changing precipitation patterns and rising sea-level. We addressed how salinity, water depth, hydroperiod, canal inflows, and local precipitation control marsh macrophyte aboveground net primary production (ANPP) and structure in the coastal ecotone of the southern Everglades. We contrasted responses in two watersheds - Taylor Slough (TS) and C-111 - systems that have and will continue to experience changes in water management. Based on long-term trajectories in plant responses, we found continued evidence of increasing water levels and length of inundation in the C-111 watershed south of the C-111 canal. We also found strong differentiation among sites in upper TS that was dependent on hydrology. Finally, salinity, local precipitation and freshwater discharge from upstream explained over 80 % of the variance in Cladium ANPP at a brackish water site in TS. Moreover, our study showed that, while highly managed, the TS and C-111 watersheds maintain legacies in spatial pattern that would facilitate hydrologic restoration. Based on the trajectories in Cladium and Eleocharis, shifts in plant community structure could occur within 5–10 years of sustained water management change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Great Belt, the largest inlet to the Baltic Sea, has a deep and well defined channel system. A distinct thermohaline layer at roughly 18 to 20 m of water depth separates the saltier and generally cooler deeper North Sea water from the brackish and warmer surface water. It is practically a current dominated area, with the strongest bottom currents due to prolonged west winds. The size and shape of the surface sediments and their grain size distributions show a close relationship with the prevailing hydrographical conditions. Southerly current marks predominate while northerly directions are confined to 10 to 14 m of water depth. The degree of bioturbation is highest in the uppermost sedimentary cover where practically all original stratification has been destroyed. Various bioturbate structures have been identified with the fauna. Coiling ratios of Ammonia beccarii (Linnaeus) have been successfully applied for correlation in the postglacial sediments of the early Littorina Transgression. The succession shows that in the Boreal brackish water conditions were probably followed by peat and limnic sediments as the sea regressed. With the Littorina Transgression, the sea again entered the area and high sedimentation rates resulted in the major deposits of the Great Belt. At least for the last 4000 years, sedimentation rates had been very low. Present day currents sweep out the sediments, mainly to the southern marginal areas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Gesteine des bearbeiteten Aufschlusses, dem Naturdenkmal "Saurierfährten Münchehagen" bei Münchehagen (Rehburger Berge), liegen stratigraphisch in der Bückeberg-Formation des Berrias (Wealden). Aufgeschlossen ist der Hauptsandstein (Wealden 3) . Es werden die Sedimenttexturen der Sohlbankfläche des ehemaligen Steinbruchs analysiert und interpretiert. Vorherrschende Schichtungstypen sind Wellenrippelschichtung und Flaserschichtung. Die Sedimente sind stark bioturbat. Auf mehreren freiliegenden Flächenniveaus der Sohlbank sind Rip- pelmarken zu beobachten, die systematisch vermessen wurden. Danach handelt es sich uro Wellenrippeln und untergeordnet um strömungsüberformte Wellenrippeln durch ablaufendes Wasser. Zahlreiche Merkmale zeigen wiederholtes Auftauchen und Trok- kenfallen an. Tonlagen kennzeichnen zeitweilige Stillwasserbedingungen. Ein ehemals verzweigtes Rinnensystem ist in Relikten erhalten und beweist ebenfalls einen wechselnden Wasserstand (ablaufendes Wasser). Sporadisch kam es im Zuge hochenergetischer Ereignisse zu einem schichtflutartigen Abfließen des Wassers. Eine reiche Ichnofauna ist zu beobachten. Wenige Spurentypen sind vorhanden, die Spurendichte ist jedoch sehr hoch. Es dominieren horizontale oder wenig geneigte Gestaltungswühlgefüge, vertikale Bauten kommen nur untergeordnet vor. Als häufigste Spurentypen treten Thalassinoides, Muensteria, Plano- lites und Pelecypodichnus auf. Die Größe der Ichnofossilien ist meist gering. Die Spuren bilden eine Ichnocoenose aus Ichnofossilien der Cruziana- und untergeordnet der Skolithos- Fazies. Bivalven belegen Brackwasser-Verhältnisse. Dies alles sind Merkmale eines lagunären Ablagerungsraumes, gelegen am Rand eines gezeitenarmen bzw. -losen Nebenmeeres (Niedersächsisches Becken) im Übergang von der fluviatilen in die litorale Fazies im rückwärtigen Bereich eines Barrierensystems. Wahrscheinlich spielte Wind eine entscheidende Rolle als Ursache für Wasserspiegelschwankungen. Die maximale Wassertiefe bei auflandigem Sturm hat vermutlich nicht mehr als 3 - 4 m betragen. Sonst war sie wahrscheinlich deutlich geringer und ermöglichte Dinosauriern ein Durchwaten des Gewässers, wie Fährten auf der Sohlfläche beweisen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study was carried out in order to determine neoplasia presence in rainbow trout in Haraz area. Neoplasia in various species of fishes including freshwater, brackish water and marine fishes was reported in other countries. But up to now there is no documented report of rainbow trout neoplasia in Iran. The study was performed in 20 farms of Haraz area during 2004-2005. All fishes of each farm firstly were observed in order to any abnormal mass which is suspicious to neoplasia. Besides in order to observation of external and internal organs, 20 fishes was sampled randomly from each farm and were examined clinically and necroptically. Any suspicious lesions were sent to pathology laboratory in 10% formalin followed by taking pictures of the lesions. Then histopathological evaluations were performed. From 400 fishes, 3 neoplastic cases including hepatocellular carcinoma along with bile duct papilloma, hepatocellular carcinoma and bile duct adenocarcinoma and intestine adenocarcinoma were found which all were in brooder fish.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of four light intensities (0; 2.8 +/- 0.9; 5,5 +/- 1,8 e 7,8 +/- 2,5 mu mol s(-1) m(-2), about 136.5 +/- 87.5; 273 +/- 43.8 e 390 +/- 125 lux, respectively) on survival, productivity, weight gain and larval development of Macrobrachium amazonicum were investigated. Four treatments with three replicate tanks were evaluated. Newly hatched larvae were held in black tanks (80.2 +/- 0.6 larvae L(-1)) filled with 50-L-brackish water (salinity of 10), in a recirculating system. Tanks were covered with shadow cloth allowing 35% and 70% light, respectively, to reach light intensities of 2.8 +/- 0.9 and 5.5 +/- 1.8 mu mol s(-1) m(-2) at the water surface. Complete absence of light (0 mu mol s(-1) m(-2)) was obtained covering the tanks with opaque black plastic, and full-light condition used no covering (7.8 +/- 2.5 mu mol s(-1) m(-2)). Observations showed that the survival rate was not affected by light intensity. Productivity and weight gain were higher under 7.8 +/- 2.5 mu mol s(-1) m(-2) light intensity than under 0 and 2.8 +/- 0.9 1 mu mol s(-1) m(-2) intensities (P<0.05). The larval development index was similar among the treatments under the different light intensities. However, from stage VII this index was increased slightly in the treatment under 7.8 +/- 2.5 mu mol s(-1) m(-2) light intensity. In conclusion, light intensity affects larval development of M. amazonicum. Values as high as 7.8 mu mol s(-1) m(-2) (about 390 lux) improve the larval performance by enhancing development, productivity and weight gain compared to lower values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Brackish water ecosystems are often exposed to wide variations in environmental variables, including temperature and salinity, which may cause strong selective pressures on organisms modifying the genetic patterns of species. The aim of this work was to test whether there is a ‘divergence-with-gene flow’ in coastal lagoon populations of white seabream (Diplodus sargus) (Ria Formosa, S Portugal and Mar Menor, SE Spain) respect to four marine populations, by using partial sequences of cyt b mitochondrial gene and information from nine microsatellite loci. Genetic diversity was highest in both coastal lagoons (Mar Menor and Ria Formosa) considering mitochondrial and nuclear markers. Although some of FST population pairwise comparisons were not significant, analyses of molecular variance (AMOVAs) detected differences between groups (coastal lagoon and marine) close to significance. Also, only two haplotypes (Cytb-17 and Cytb-18) were detected in both coastal lagoon sampling sites and these localities (Mar Menor and Ria Formosa) showed the highest number of singletons, some of them with a high number of mutations, as has been already described for other Mar Menor populations (Pomatochistus marmoratus and Holothuria polii). Also, several tests detected significant positive and balancing selection considering mtDNA and microsatellite data. These data support the hypothesis of selection as one of the drivers of the genetic differences found between coastal lagoon and marine populations. The life strategy adopted by Diplodus sargus in coastal lagoons allows it to decrease its mortality rate and improve the heritability of its genes. Also, the increase time spent in coastal lagoons with different temperatures and salinities favours the fitness selection and the maintenance of exclusive haplotypes and genotypes in coastal lagoon inhabitants favouring the ‘divergence-with-gene-flow’.