973 resultados para Boundary value problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of reconstruction of the temperature from knowledge of the temperature and heat flux on a part of the boundary of a bounded planar domain containing corner points. An iterative method is proposed involving the solution of mixed boundary value problems for the heat equation (with time-dependent conductivity). These mixed problems are shown to be well-posed in a weighted Sobolev space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative procedure is proposed for the reconstruction of a temperature field from a linear stationary heat equation with stochastic coefficients, and stochastic Cauchy data given on a part of the boundary of a bounded domain. In each step, a series of mixed well-posed boundary-value problems are solved for the stochastic heat operator and its adjoint. Well-posedness of these problems is shown to hold and convergence in the mean of the procedure is proved. A discretized version of this procedure, based on a Monte Carlo Galerkin finite-element method, suitable for numerical implementation is discussed. It is demonstrated that the solution to the discretized problem converges to the continuous as the mesh size tends to zero.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider analytical and numerical solutions to the Dirichlet boundary-value problem for the biharmonic partial differential equation on a disc of finite radius in the plane. The physical interpretation of these solutions is that of the harmonic oscillations of a thin, clamped plate. For the linear, fourth-order, biharmonic partial differential equation in the plane, it is well known that the solution method of separation in polar coordinates is not possible, in general. However, in this paper, for circular domains in the plane, it is shown that a method, here called quasi-separation of variables, does lead to solutions of the partial differential equation. These solutions are products of solutions of two ordinary linear differential equations: a fourth-order radial equation and a second-order angular differential equation. To be expected, without complete separation of the polar variables, there is some restriction on the range of these solutions in comparison with the corresponding separated solutions of the second-order harmonic differential equation in the plane. Notwithstanding these restrictions, the quasi-separation method leads to solutions of the Dirichlet boundary-value problem on a disc with centre at the origin, with boundary conditions determined by the solution and its inward drawn normal taking the value 0 on the edge of the disc. One significant feature for these biharmonic boundary-value problems, in general, follows from the form of the biharmonic differential expression when represented in polar coordinates. In this form, the differential expression has a singularity at the origin, in the radial variable. This singularity translates to a singularity at the origin of the fourth-order radial separated equation; this singularity necessitates the application of a third boundary condition in order to determine a self-adjoint solution to the Dirichlet boundary-value problem. The penultimate section of the paper reports on numerical solutions to the Dirichlet boundary-value problem; these results are also presented graphically. Two specific cases are studied in detail and numerical values of the eigenvalues are compared with the results obtained in earlier studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for reconstruction of solutions to second order elliptic equations by Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the elliptic operator and its adjoint. The convergence proof of this method in a weighted L2 space is included. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative procedure is proposed for the reconstruction of a stationary temperature field from Cauchy data given on a part of the boundary of a bounded plane domain where the boundary is smooth except for a finite number of corner points. In each step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. Convergence is proved in a weighted L2-space. Numerical results are included which show that the procedure gives accurate and stable approximations in relatively few iterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for reconstruction of the solution to a parabolic initial boundary value problem of second order from Cauchy data is presented. The data are given on a part of the boundary. At each iteration step, a series of well-posed mixed boundary value problems are solved for the parabolic operator and its adjoint. The convergence proof of this method in a weighted L2-space is included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative method for the reconstruction of a stationary three-dimensional temperature field, from Cauchy data given on a part of the boundary, is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L 2-space is include

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 44A40, 44A35

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 33D15, 33D90, 39A13

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This survey is devoted to some fractional extensions of the incomplete lumped formulation, the lumped formulation and the formulation of Lauwerier of the temperature field problem in oil strata. The method of integral transforms is used to solve the corresponding boundary value problems for the fractional heat equation. By using Caputo’s differintegration operator and the Laplace transform, new integral forms of the solutions are obtained. In each of the different cases the integrands are expressed in terms of a convolution of two special functions of Wright’s type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Недю Попиванов, Цветан Христов - Изследвани са някои тримерни аналози на задачата на Дарбу в равнината. През 1952 М. Протер формулира нови тримерни гранични задачи както за клас слабо хиперболични уравнения, така и за някои хиперболично-елиптични уравнения. За разлика от коректността на двумерната задача на Дарбу, новите задачи са некоректни. За слабо хиперболични уравнения, съдържащи младши членове, ние намираме достатъчни условия както за съществуване и единственост на обобщени решения с изолирана степенна особеност, така и за единственост на квази-регулярни решения на задачата на Протер.