996 resultados para Botulinum toxin type-A


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charqui meats were prepared in laboratory conditions in order to carry out experiments to observe the possibility of development of enterotoxigenic Staphylococcus aureus and Clostridium bottilinum proteolytic type B spores and their toxins. Results demonstrated that the harsh processing conditions, high salt concentration, relative high temperature, a, values, inhibited the growth of both bacteria. Under our experimental conditions, S. aureus would survive throughout the sequence of salting steps i.e. brine followed by rock salting and the sunshine drying step. However, at final a(w) value of 0.70-0.75 would create conditions to inhibit its development. The other experiment revealed that C. botulinum spores germination also was impaired because of these low a(w) values. Under these conditions, charqui meats revealed to be safe products in relation to toxins from both enterotoxigenic S. aureus and C. botulinum. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pompilidotoxins (PMTXs), derived from the venom of solitary wasp has been known to facilitate synaptic transmission in the lobster neuromuscular junction, and a recent further study from rat trigeminal neurons revealed that the toxin slows Na+ channel inactivation without modifying activation process. Here we report that beta -PMTX modifies rat brain type II Na+ channel alpha -subunit (rBII) expressed in human embryonic kidney cells but fails to act on the rat heart alpha -subunit (rH1) at similar concentrations. We constructed a series of chimeric mutants of rBII and rH1 Na+ channels and compared modification of the steady-state Na+ currents by beta -PMTX. We found that a difference in a single amino acid between Glu-1616 in rBII and Gln-1615 in rH1 at the extracellular loop of D4S3-S4 is crucial for the action of beta -PMTX. PMTXs, which are small peptides with 13 amino acids, would be a potential tool for exploring a new functional moiety of Na+ channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel chemical subclass of toxin, [1-(3-diazenylphenyl) ethanol]iron, was identified among the compounds present in the web of the spider Nephila clavipes. This type of compound is not common among natural products, mainly in spider-venom toxins; it was shown to be a potent paralytic and/or lethal toxin applied by the spider over its web to ensure prey capture only by topical application. The structure was elucidated by means of ESI mass spectrometry, H-1-NMR spectroscopy, high-resolution (HR) mass spectrometry, and ICP spectrometry. The structure of [1-( 3-diazenylphenyl)ethanol] iron and the study of its insecticidal action may be used as a starting point for the development of new drugs for pest control in agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The culture supernatant of Escherichia coli, isolated from ostriches with diarrhea in Brazil, caused elongation in Vero cell, rounding in Chinese hamster ovary (CHO) cells and a cytoplasmic vacuolation in ostrich embryo fibroblasts (OEF), but it was not cytotoxic for chicken embryo fibroblasts (CEF). These effects were not neutralized by antiserum to cholera toxin. Polymerase chain reaction assays showed that the ostrich E.coli contained the gene encoding (eltII-A), but not those for type 1 heat-labile enterotoxin (eltA), heat-stable enterotoxins (estA, estB), verocytotoxins (stx-I, stx-II), or cytotoxic necrotizing factors (cnf 1, cnf 2). All isolates belonged to serotype O15:H8. The enteropathogenic relevance of LT-II in ostrich diarrhea remains undetermined. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of staphylococcal enterotoxins is decisive for the confirmation of an outbreak and for the determination of the enterotoxigenicity of strains. Since the recognition of their antigenicity, a large number of serological methods for the detection of enterotoxins in food and culture media have been proposed. Since immunological methods require detectable amounts of toxin, molecular biology techniques represent important tools in the microbiology laboratory. In the present study, polymerase chain reaction (PCR) was used to identify genes responsible for the production of enterotoxins and toxic shock syndrome toxin 1 (TSST-1) in S. aureus and coagulase-negative staphylococci (CNS) isolated from patients and the results were compared with those obtained by the reverse passive latex agglutination (RPLA) assay. PCR detection of toxin genes revealed a higher percentage of toxigenic S. aureus strains (46.7%) than the RPLA method (38.3%). Analysis of the toxigenic profile of CNS strains showed that 26.7% of the isolates produced some type of toxin, and one or more toxin-specific genes were detected in 40% of the isolates. These results suggests the need for further studies in order to better characterize the pathogenic potential of CNS and indicate that attention should be paid to the toxigenic capacity of this group of microorganisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityusserrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The peptide Paulistine was isolated from the venom of wasp Polybia paulista. This peptide exists under a natural equilibrium between the forms: oxidised - with an intra-molecular disulphide bridge; and reduced - in which the thiol groups of the cysteine residues do not form the disulphide bridge. The biological activities of both forms of the peptide are unknown up to now. Methods: Both forms of Paulistine were synthesised and the thiol groups of the reduced form were protected with the acetamidemethyl group [Acm-Paulistine] to prevent re-oxidation. The structure/activity relationships of the two forms were investigated, taking into account the importance of the disulphide bridge. Results: Paulistine has a more compact structure, while Acm-Paulistine has a more expanded conformation. Bioassays reported that Paulistine caused hyperalgesia by interacting with the receptors of lipid mediators involved in the cyclooxygenase type II pathway, while Acm-Paullistine also caused hyperalgesia, but mediated by receptors involved in the participation of prostanoids in the cyclooxygenase type II pathway. Conclusion: The acetamidemethylation of the thiol groups of cysteine residues caused small structural changes, which in turn may have affected some physicochemical properties of the Paulistine. Thus, the dissociation of the hyperalgesy from the edematogenic effect when the actions of Paulistine and Acm-Paulistine are compared to each other may be resulting from the influence of the introduction of Acm-group in the structure of Paulistine. General significance: The peptides Paulistine and Acm-Paulistine may be used as interesting tools to investigate the mechanisms of pain and inflammation in future studies. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) analysis of fliC for typing flagella antigen (H) of Shiga toxin-producing Escherichia coil (STEC) and enteropathogenic E. coli (EPEC) strains isolated from different animals. The molecular typing of the H type was efficient in the determination of 93 (85%) strains. Two nonmotile (H-) E. coil strains showed a PCR-RFLP electrophoretic profile that did not match known H type patterns. The fliC nucleotide sequence of strains B2N and 4a revealed a nucleotide substitution at the restriction site and a nucleotide insertion that generated a stop codon, respectively. The results of this study showed that PCR-RFLP analysis of fliC is faster, less laborious and as efficient for the determination of H type E. coli isolated from animals, compared to serotyping and that it is useful in determining H type in nonmotile strains and strains expressing non-reactive H antigens. Moreover, the fliC sequence of strain B2N suggests that we could have found a new flagellin antigen type. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rear-fanged and aglyphous snakes are usually considered not dangerous to humans because of their limited capacity of injecting venom. Therefore, only a few studies have been dedicated to characterizing the venom of the largest parcel of snake fauna. Here, we investigated the venom proteome of the rear-fanged snake Thamnodynastes strigatus, in combination with a transcriptomic evaluation of the venom gland. About 60% of all transcripts code for putative venom components. A striking finding is that the most abundant type of transcript (similar to 47%) and also the major protein type in the venom correspond to a new kind of matrix metalloproteinase (MMP) that is unrelated to the classical snake venom metalloproteinases found in all snake families. These enzymes were recently suggested as possible venom components, and we show here that they are proteolytically active and probably recruited to venom from a MMP-9 ancestor. Other unusual proteins were suggested to be venom components: a protein related to lactadherin and an EGF repeat-containing transcript. Despite these unusual molecules, seven toxin classes commonly found in typical venomous snakes are also present in the venom. These results support the evidence that the arsenals of these snakes are very diverse and harbor new types of biologically important molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dengue virus non-structural 1 (NS1) protein contributes to evasion of host immune defenses and represents a target for immune responses. Evidences generated in experimental models, as well as the immune responses elicited by infected individuals, showed that induction of anti-NS1 immunity correlates with protective immunity but may also result in the generation of cross-reactive antibodies that recognize platelets and proteins involved in the coagulation cascade. In the present work, we evaluated the immune responses, protection to type 2 dengue virus (DENV2) challenges and safety parameters in BALB/c mice vaccinated with a recombinant NS1 protein in combination with three different adjuvants: aluminum hydroxide (alum), Freund's adjuvant (FA) or a genetically detoxified derivative of the heat-labile toxin (LTG33D), originally produced by some enterotoxigenic Escherichia coil (ETEC) strains. Mice were subcutaneously (s.c.) immunized with different vaccine formulations and the induced NS1-specific responses, including serum antibodies and T cell responses, were measured. Mice were also subjected to lethal challenges with the DENV2 NGC strain. The results showed that maximal protective immunity (50%) was achieved in mice vaccinated with NS1 in combination with LIG33D. Analyses of the NS1-specific immune responses showed that the anti-virus protection correlated mainly with the serum anti-NS1 antibody responses including higher avidity to the target antigen. Mice immunized with LTG33D elicited a prevailing IgG2a subclass response and generated antibodies with stronger affinity to the antigen than those generated in mice immunized with the other vaccine formulations. The vaccine formulations were also evaluated regarding induction of deleterious side effects and, in contrast to mice immunized with the FA-adjuvanted vaccine, no significant hepatic damage or enhanced C-reactive protein levels were detected in mice immunized with NS1 and LTG33D. Similarly, no detectable alterations in bleeding time and hematological parameters were detected in mice vaccinated with NS1 and LTG33D. Altogether, these results indicate that the combination of a purified recombinant NS1 and a nontoxic LT derivative is a promising alternative for the generation of safe and effective protein-based anti-dengue vaccine. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1β, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.