867 resultados para Body sensor network
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
Backscatter communication is an emerging wireless technology that recently has gained an increase in attention from both academic and industry circles. The key innovation of the technology is the ability of ultra-low power devices to utilize nearby existing radio signals to communicate. As there is no need to generate their own energetic radio signal, the devices can benefit from a simple design, are very inexpensive and are extremely energy efficient compared with traditional wireless communication. These benefits have made backscatter communication a desirable candidate for distributed wireless sensor network applications with energy constraints.
The backscatter channel presents a unique set of challenges. Unlike a conventional one-way communication (in which the information source is also the energy source), the backscatter channel experiences strong self-interference and spread Doppler clutter that mask the information-bearing (modulated) signal scattered from the device. Both of these sources of interference arise from the scattering of the transmitted signal off of objects, both stationary and moving, in the environment. Additionally, the measurement of the location of the backscatter device is negatively affected by both the clutter and the modulation of the signal return.
This work proposes a channel coding framework for the backscatter channel consisting of a bi-static transmitter/receiver pair and a quasi-cooperative transponder. It proposes to use run-length limited coding to mitigate the background self-interference and spread-Doppler clutter with only a small decrease in communication rate. The proposed method applies to both binary phase-shift keying (BPSK) and quadrature-amplitude modulation (QAM) scheme and provides an increase in rate by up to a factor of two compared with previous methods.
Additionally, this work analyzes the use of frequency modulation and bi-phase waveform coding for the transmitted (interrogating) waveform for high precision range estimation of the transponder location. Compared to previous methods, optimal lower range sidelobes are achieved. Moreover, since both the transmitted (interrogating) waveform coding and transponder communication coding result in instantaneous phase modulation of the signal, cross-interference between localization and communication tasks exists. Phase discriminating algorithm is proposed to make it possible to separate the waveform coding from the communication coding, upon reception, and achieve localization with increased signal energy by up to 3 dB compared with previous reported results.
The joint communication-localization framework also enables a low-complexity receiver design because the same radio is used both for localization and communication.
Simulations comparing the performance of different codes corroborate the theoretical results and offer possible trade-off between information rate and clutter mitigation as well as a trade-off between choice of waveform-channel coding pairs. Experimental results from a brass-board microwave system in an indoor environment are also presented and discussed.
Resumo:
In this paper we propose a model for intelligent agents (sensors) on a Wireless Sensor Network to guard against energy-drain attacks in an energy-efficient and autonomous manner. This is intended to be achieved via an energy-harvested Wireless Sensor Network using a novel architecture to propagate knowledge to other sensors based on automated reasoning from an attacked sensor.
Resumo:
Les réseaux de capteurs sont formés d’un ensemble de dispositifs capables de prendre individuellement des mesures d’un environnement particulier et d’échanger de l’information afin d’obtenir une représentation de haut niveau sur les activités en cours dans la zone d’intérêt. Une telle détection distribuée, avec de nombreux appareils situés à proximité des phénomènes d’intérêt, est pertinente dans des domaines tels que la surveillance, l’agriculture, l’observation environnementale, la surveillance industrielle, etc. Nous proposons dans cette thèse plusieurs approches pour effectuer l’optimisation des opérations spatio-temporelles de ces dispositifs, en déterminant où les placer dans l’environnement et comment les contrôler au fil du temps afin de détecter les cibles mobiles d’intérêt. La première nouveauté consiste en un modèle de détection réaliste représentant la couverture d’un réseau de capteurs dans son environnement. Nous proposons pour cela un modèle 3D probabiliste de la capacité de détection d’un capteur sur ses abords. Ce modèle inègre également de l’information sur l’environnement grâce à l’évaluation de la visibilité selon le champ de vision. À partir de ce modèle de détection, l’optimisation spatiale est effectuée par la recherche du meilleur emplacement et l’orientation de chaque capteur du réseau. Pour ce faire, nous proposons un nouvel algorithme basé sur la descente du gradient qui a été favorablement comparée avec d’autres méthodes génériques d’optimisation «boites noires» sous l’aspect de la couverture du terrain, tout en étant plus efficace en terme de calculs. Une fois que les capteurs placés dans l’environnement, l’optimisation temporelle consiste à bien couvrir un groupe de cibles mobiles dans l’environnement. D’abord, on effectue la prédiction de la position future des cibles mobiles détectées par les capteurs. La prédiction se fait soit à l’aide de l’historique des autres cibles qui ont traversé le même environnement (prédiction à long terme), ou seulement en utilisant les déplacements précédents de la même cible (prédiction à court terme). Nous proposons de nouveaux algorithmes dans chaque catégorie qui performent mieux ou produits des résultats comparables par rapport aux méthodes existantes. Une fois que les futurs emplacements de cibles sont prédits, les paramètres des capteurs sont optimisés afin que les cibles soient correctement couvertes pendant un certain temps, selon les prédictions. À cet effet, nous proposons une méthode heuristique pour faire un contrôle de capteurs, qui se base sur les prévisions probabilistes de trajectoire des cibles et également sur la couverture probabiliste des capteurs des cibles. Et pour terminer, les méthodes d’optimisation spatiales et temporelles proposées ont été intégrées et appliquées avec succès, ce qui démontre une approche complète et efficace pour l’optimisation spatio-temporelle des réseaux de capteurs.
Resumo:
Wireless power transfer (WPT) and radio frequency (RF)-based energy har- vesting arouses a new wireless network paradigm termed as wireless powered com- munication network (WPCN), where some energy-constrained nodes are enabled to harvest energy from the RF signals transferred by other energy-sufficient nodes to support the communication operations in the network, which brings a promising approach for future energy-constrained wireless network design. In this paper, we focus on the optimal WPCN design. We consider a net- work composed of two communication groups, where the first group has sufficient power supply but no available bandwidth, and the second group has licensed band- width but very limited power to perform required information transmission. For such a system, we introduce the power and bandwidth cooperation between the two groups so that both group can accomplish their expected information delivering tasks. Multiple antennas are employed at the hybrid access point (H-AP) to en- hance both energy and information transfer efficiency and the cooperative relaying is employed to help the power-limited group to enhance its information transmission throughput. Compared with existing works, cooperative relaying, time assignment, power allocation, and energy beamforming are jointly designed in a single system. Firstly, we propose a cooperative transmission protocol for the considered system, where group 1 transmits some power to group 2 to help group 2 with information transmission and then group 2 gives some bandwidth to group 1 in return. Sec- ondly, to explore the information transmission performance limit of the system, we formulate two optimization problems to maximize the system weighted sum rate by jointly optimizing the time assignment, power allocation, and energy beamforming under two different power constraints, i.e., the fixed power constraint and the aver- age power constraint, respectively. In order to make the cooperation between the two groups meaningful and guarantee the quality of service (QoS) requirements of both groups, the minimal required data rates of the two groups are considered as constraints for the optimal system design. As both problems are non-convex and have no known solutions, we solve it by using proper variable substitutions and the semi-definite relaxation (SDR). We theoretically prove that our proposed solution method can guarantee to find the global optimal solution. Thirdly, consider that the WPCN has promising application potentials in future energy-constrained net- works, e.g., wireless sensor network (WSN), wireless body area network (WBAN) and Internet of Things (IoT), where the power consumption is very critical. We investigate the minimal power consumption optimal design for the considered co- operation WPCN. For this, we formulate an optimization problem to minimize the total consumed power by jointly optimizing the time assignment, power allocation, and energy beamforming under required data rate constraints. As the problem is also non-convex and has no known solutions, we solve it by using some variable substitutions and the SDR method. We also theoretically prove that our proposed solution method for the minimal power consumption design guarantees the global optimal solution. Extensive experimental results are provided to discuss the system performance behaviors, which provide some useful insights for future WPCN design. It shows that the average power constrained system achieves higher weighted sum rate than the fixed power constrained system. Besides, it also shows that in such a WPCN, relay should be placed closer to the multi-antenna H-AP to achieve higher weighted sum rate and consume lower total power.
Resumo:
Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.
Resumo:
This paper presents experimental results of the communication performance evaluation of a prototype ZigBee-based patient monitoring system commissioned in an in-patient floor of a Portuguese hospital (HPG – Hospital Privado de Guimar~aes). Besides, it revisits relevant problems that affect the performance of nonbeacon-enabled ZigBee networks. Initially, the presence of hidden-nodes and the impact of sensor node mobility are discussed. It was observed, for instance, that the message delivery ratio in a star network consisting of six wireless electrocardiogram sensor devices may decrease from 100% when no hidden-nodes are present to 83.96% when half of the sensor devices are unable to detect the transmissions made by the other half. An additional aspect which affects the communication reliability is a deadlock condition that can occur if routers are unable to process incoming packets during the backoff part of the CSMA-CA mechanism. A simple approach to increase the message delivery ratio in this case is proposed and its effectiveness is verified. The discussion and results presented in this paper aim to contribute to the design of efficient networks,and are valid to other scenarios and environments rather than hospitals.
Resumo:
Network control systems (NCSs) are spatially distributed systems in which the communication between sensors, actuators and controllers occurs through a shared band-limited digital communication network. However, the use of a shared communication network, in contrast to using several dedicated independent connections, introduces new challenges which are even more acute in large scale and dense networked control systems. In this paper we investigate a recently introduced technique of gathering information from a dense sensor network to be used in networked control applications. Obtaining efficiently an approximate interpolation of the sensed data is exploited as offering a good tradeoff between accuracy in the measurement of the input signals and the delay to the actuation. These are important aspects to take into account for the quality of control. We introduce a variation to the state-of-the-art algorithms which we prove to perform relatively better because it takes into account the changes over time of the input signal within the process of obtaining an approximate interpolation.
Resumo:
The IEEE 802.15.4/ZigBee protocols are gaining increasing interests in both research and industrial communities as candidate technologies for Wireless Sensor Network (WSN) applications. In this paper, we present an open-source implementation of the IEEE 802.15.4/Zigbee protocol stack under the TinyOS operating system for the MICAz motes. This work has been driven by the need for an open-source implementation of the IEEE 802.15.4/ZigBee protocols, filling a gap between some newly released complex C implementations and black-box implementations from different manufacturers. In addition, we share our experience on the challenging problem that we have faced during the implementation of the protocol stack on the MICAz motes. We strongly believe that this open-source implementation will potentiate research works on the IEEE 802.15.4/Zigbee protocols allowing their demonstration and validation through experimentation.
Resumo:
Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor reading in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.
Resumo:
The IEEE 802.15.4 protocol has the ability to support time-sensitive Wireless Sensor Network (WSN) applications due to the Guaranteed Time Slot (GTS) Medium Access Control mechanism. Recently, several analytical and simulation models of the IEEE 802.15.4 protocol have been proposed. Nevertheless, currently available simulation models for this protocol are both inaccurate and incomplete, and in particular they do not support the GTS mechanism. In this paper, we propose an accurate OPNET simulation model, with focus on the implementation of the GTS mechanism. The motivation that has driven this work is the validation of the Network Calculus based analytical model of the GTS mechanism that has been previously proposed and to compare the performance evaluation of the protocol as given by the two alternative approaches. Therefore, in this paper we contribute an accurate OPNET model for the IEEE 802.15.4 protocol. Additionally, and probably more importantly, based on the simulation model we propose a novel methodology to tune the protocol parameters such that a better performance of the protocol can be guaranteed, both concerning maximizing the throughput of the allocated GTS as well as concerning minimizing frame delay.