922 resultados para Blood oxygen transport


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wetland ecosystems provide many valuable ecosystem services, including carbon (C) storage and improvement of water quality. Yet, restored and managed wetlands are not frequently evaluated for their capacity to function in order to deliver on these values. Specific restoration or management practices designed to meet one set of criteria may yield unrecognized biogeochemical costs or co-benefits. The goal of this dissertation is to improve scientific understanding of how wetland restoration practices and waterfowl habitat management affect critical wetland biogeochemical processes related to greenhouse gas emissions and nutrient cycling. I met this goal through field and laboratory research experiments in which I tested for relationships between management factors and the biogeochemical responses of wetland soil, water, plants and trace gas emissions. Specifically, I quantified: (1) the effect of organic matter amendments on the carbon balance of a restored wetland; (2) the effectiveness of two static chamber designs in measuring methane (CH4) emissions from wetlands; (3) the impact of waterfowl herbivory on the oxygen-sensitive processes of methane emission and coupled nitrification-denitrification; and (4) nitrogen (N) exports caused by prescribed draw down of a waterfowl impoundment.

The potency of CH4 emissions from wetlands raises the concern that widespread restoration and/or creation of freshwater wetlands may present a radiative forcing hazard. Yet data on greenhouse gas emissions from restored wetlands are sparse and there has been little investigation into the greenhouse gas effects of amending wetland soils with organic matter, a recent practice used to improve function of mitigation wetlands in the Eastern United States. I measured trace gas emissions across an organic matter gradient at a restored wetland in the coastal plain of Virginia to test the hypothesis that added C substrate would increase the emission of CH4. I found soils heavily loaded with organic matter emitted significantly more carbon dioxide than those that have received little or no organic matter. CH4 emissions from the wetland were low compared to reference wetlands and contrary to my hypothesis, showed no relationship with the loading rate of added organic matter or total soil C. The addition of moderate amounts of organic matter (< 11.2 kg m-2) to the wetland did not greatly increase greenhouse gas emissions, while the addition of high amounts produced additional carbon dioxide, but not CH4.

I found that the static chambers I used for sampling CH4 in wetlands were highly sensitive to soil disturbance. Temporary compression around chambers during sampling inflated the initial chamber CH4 headspace concentration and/or lead to generation of nonlinear, unreliable flux estimates that had to be discarded. I tested an often-used rubber-gasket sealed static chamber against a water-filled-gutter seal chamber I designed that could be set up and sampled from a distance of 2 m with a remote rod sampling system to reduce soil disturbance. Compared to the conventional design, the remotely-sampled static chambers reduced the chance of detecting inflated initial CH4 concentrations from 66 to 6%, and nearly doubled the proportion of robust linear regressions from 45 to 86%. The new system I developed allows for more accurate and reliable CH4 sampling without costly boardwalk construction.

I explored the relationship between CH4 emissions and aquatic herbivores, which are recognized for imposing top-down control on the structure of wetland ecosystems. The biogeochemical consequences of herbivore-driven disruption of plant growth, and in turn, mediated oxygen transport into wetland sediments, were not previously known. Two growing seasons of herbivore exclusion experiments in a major waterfowl overwintering wetland in the Southeastern U.S. demonstrate that waterfowl herbivory had a strong impact on the oxygen-sensitive processes of CH4 emission and nitrification. Denudation by herbivorous birds increased cumulative CH4 flux by 233% (a mean of 63 g CH4 m-2 y-1) and inhibited coupled nitrification-denitrification, as indicated by nitrate availability and emissions of nitrous oxide. The recognition that large populations of aquatic herbivores may influence the capacity for wetlands to emit greenhouse gases and cycle nitrogen is particularly salient in the context of climate change and nutrient pollution mitigation goals. For example, our results suggest that annual emissions of 23 Gg of CH4 y-1 from ~55,000 ha of publicly owned waterfowl impoundments in the Southeastern U.S. could be tripled by overgrazing.

Hydrologically controlled moist-soil impoundment wetlands provide critical habitat for high densities of migratory bird populations, thus their potential to export nitrogen (N) to downstream waters may contribute to the eutrophication of aquatic ecosystems. To investigate the relative importance of N export from these built and managed habitats, I conducted a field study at an impoundment wetland that drains into hypereutrophic Lake Mattamuskeet. I found that prescribed hydrologic drawdowns of the impoundment exported roughly the same amount of N (14 to 22 kg ha-1) as adjacent fertilized agricultural fields (16 to 31 kg ha-1), and contributed approximately one-fifth of total N load (~45 Mg N y-1) to Lake Mattamuskeet. Ironically, the prescribed drawdown regime, designed to maximize waterfowl production in impoundments, may be exacerbating the degradation of habitat quality in the downstream lake. Few studies of wetland N dynamics have targeted impoundments managed to provide wildlife habitat, but a similar phenomenon may occur in some of the 36,000 ha of similarly-managed moist-soil impoundments on National Wildlife Refuges in the southeastern U.S. I suggest early drawdown as a potential method to mitigate impoundment N pollution and estimate it could reduce N export from our study impoundment by more than 70%.

In this dissertation research I found direct relationships between wetland restoration and impoundment management practices, and biogeochemical responses of greenhouse gas emission and nutrient cycling. Elevated soil C at a restored wetland increased CO2 losses even ten years after the organic matter was originally added and intensive herbivory impact on emergent aquatic vegetation resulted in a ~230% increase in CH4 emissions and impaired N cycling and removal. These findings have important implications for the basic understanding of the biogeochemical functioning of wetlands and practical importance for wetland restoration and impoundment management in the face of pressure to mitigate the environmental challenges of global warming and aquatic eutrophication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has become a routine clinical procedure for localization of language and motor brain regions and has been replacing more invasive preoperative procedures. However, the fMRI results from these tasks are not always reproducible even from the same patient. Evaluating the reproducibility of language and speech mapping is especially complicated due to the complex brain circuitry that may become activated during the functional task. Non-language areas such as sensory, attention, decision-making, and motor brain regions may also be activated in addition to the specific language regions during a traditional sentence-completion task. In this study, I test a new approach, which utilizes 4-minute video-based tasks, to map language and speech brain regions for patients undergoing brain surgery. Results from 35 subjects have shown that the video-based task activates Wernicke’s area, as well as Broca’s area in most subjects. The computed laterality indices, which indicate the dominant hemisphere from that functional task, have indicated left dominance from the video-based tasks. This study has shown that the video-based task may be an alternative method for localization of language and speech brain regions for patients who are unable to complete the sentence-completion task.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

CONTEXT: Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. OBJECTIVE: To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. DESIGN: These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. PATIENTS: Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. INTERVENTION: Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. MAIN OUTCOME MEASURES: Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. RESULTS: Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. CONCLUSIONS: Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The challenge for wastewater professionals is to design and operate treatment processes that support human well being and are environmentally sensitive throughout the life-cycle. This research focuses on one technology for small-scale wastewater treatment: the vertical flow constructed wetland (VFCW), which is herein investigated for the capacity to remove ammonium and nitrate nitrogen from wastewater. Hydraulic regime and presence/absence of vegetation are the basis for a three-phase bench scale experiment to determine oxygen transfer and nitrogen fate in VFCWs. Results show that 90% NH4+-N removal is achieved in aerobic downflow columns, 60% NO3--N removal occurs in anaerobic upflow columns, and 60% removal of total nitrogen can be achieved in downflow-upflow in-series. The experimental results are studied further using a variably saturated flow and reactive transport model, which allows a mechanistic explanation of the fate and transport of oxygen and nitrogen. The model clarifies the mechanisms of oxygen transport and nitrogen consumption, and clarifies the need for readily biodegradable COD for denitrification. A VFCW is then compared to a horizontal flow constructed wetland (HFCW) for life cycle environmental impacts. High areal emissions of greenhouse gases from VFCWs compared to HFCWs are the driver for the study. The assessment shows that because a VFCW is only 25% of the volume of an HFCW designed for the same treatment quality, the VFCW has only 25-30% of HFCW impacts over 12 impact categories and 3 damage categories. Results show that impacts could be reduced by design improvements. Design recommendations are downflow wetlands for nitrification, upflow wetlands for denitrification, series wetlands for total nitrogen removal, hydraulic load of 142 L/m2d, 30 cm downflow wetland depth, 1.0 m upflow wetland depth, recycle, vegetation and medium-grained sand. These improvements will optimize nitrogen removal, minimize gaseous emissions, and reduce wetland material requirements, thus reducing environmental impact without sacrificing wastewater treatment quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We aimed to analyse the effect of experience level in the psychophysiological response and specific fine motor skills of novel and expert parachute warfighters during a tactical combat parachute jump. We analysed blood oxygen saturation, heart rate, salivary cortisol, blood glucose, lactate and creatinkinase, leg strength, isometric hand-grip strength, cortical arousal, specific fine motor skills and cognitive anxiety, somatic anxiety and self-confident before and after a tactical combat parachute jump in 40 warfighters divided in two group, novel (n = 17) and expert group (n = 23). Novels presented a higher heart rate, lactate, cognitive anxiety, somatic anxiety and a lower self-confident than experts during the jump. We concluded that experience level has a direct effect on the psychophysiological response since novel paratroopers presented a higher psychophysiological response than compared to the expert ones, however this result neither affected the specific fine motor skills nor the muscle structure after a tactical combat parachute jump.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Adequate blood supply and sufficient mechanical stability are necessary for timely fracture healing. Damage to vessels impairs blood supply; hindering the transport of oxygen which is an essential metabolite for cells involved in repair. The degree of mechanical stability determines the mechanical conditions in the healing tissues. The mechanical conditions can influence tissue differentiation and may also inhibit revascularization. Knowledge of the actual conditions in a healing fracture in vivo is extremely limited. This study aimed to quantify the pressure, oxygen tension and temperature in the external callus during the early phase of bone healing. Six Merino-mix sheep underwent a tibial osteotomy. The tibia was stabilized with a standard mono-lateral external fixator. A multi-parameter catheter was placed adjacent to the osteotomy gap on the medial aspect of the tibia. Measurements of oxygen tension and temperature were performed for ten days post-op. Measurements of pressure were performed during gait on days three and seven. The ground reaction force and the interfragmentary movements were measured simultaneously. The maximum pressure during gait increased (p=0.028) from three (41.3 [29.2-44.1] mm Hg) to seven days (71.8 [61.8-84.8] mm Hg). During the same interval, there was no change (p=0.92) in the peak ground reaction force or in the interfragmentary movement (compression: p=0.59 and axial rotation: p=0.11). Oxygen tension in the haematoma (74.1 mm Hg [68.6-78.5]) was initially high post-op and decreased steadily over the first five days. The temperature increased over the first four days before reaching a plateau at approximately 38.5 degrees C on day four. This study is the first to report pressure, oxygen tension and temperature in the early callus tissues. The magnitude of pressure increased even though weight bearing and IFM remained unchanged. Oxygen tensions were initially high in the haematoma and fell gradually with a low oxygen environment first established after four to five days. This study illustrates that in bone healing the local environment for cells may not be considered constant with regard to oxygen tension, pressure and temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In rats immunized systemically with tetanus toxoid the concentration of specific anti-tetanus-toxoid-specific IgG in fluid from the rete testis and cauda epididymidis were respectively 0.6% and 1.4% the concentration in blood serum. The extratesticular duct system reabsorbed 97% of the IgG and 99% of the fluid leaving the rete, but estradiol administration affected the site of reabsorption. In untreated rats, the ductuli efferentes reabsorbed 94% of the IgG and 96% of the fluid leaving the rete, whereas estradiol-treated rats reabsorbed 83% of the IgG and 86% of the fluid, and the ductus epididymidis fully compensated for these different effects of estradiol on the ductuli efferentes. The concentrations of IgG in secretions of the seminal vesicles and prostate gland were lower (0.1% and 0.3% respectively of the titers in blood serum) than in fluids from the extratesticular ducts, and were not affected by the administration of estradiol. RT-PCR showed that Fcgrt (neonatal Fc receptor, also known as FcRn) is expressed in the reproductive ducts, where IgG is probably transported across epithelium, being particularly strong in the ductuli efferentes (where most IgG was reabsorbed) and distal caput epididymidis. It is concluded that IgG enters the rete testis and is concentrated only 2.5-fold along the extratesticular duct system, unlike spermatozoa, which are concentrated 95-fold. Further, the ductus epididymidis can recognize and compensate for changes in function of the ductuli efferentes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report the tuning of oxygen content of La0.5Ca0.5MnO3-y and its effect on electrical transport and magnetic properties. A small reduction of oxygen content leads to a decrease in sample resistivity, which is more dramatic at low temperatures. No significant change is seen to occur in the magnetic properties for this case. Further reduction in the oxygen content increases the resistivity remarkably, as compared to the as-prepared sample. The amplitude of the ferromagnetic (FM) transition at 225 K decreases, and the antiferromagnetic (AFM) transition at 130 K disappears. For samples with y=0.17, insulator-metal transition and paramagnetic-ferromagnetic transition occur around 167 K. The results are explained in terms of the effect of oxygen vacancies on the coexistence of the metallic FM phase and the insulating charge ordered AFM phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ab levels in the genital tract may be important in fertility and in preventing sexually transmitted diseases, In this study, I-125-labeled polymer or monomer mAb IgA (C4pIgA or C4mIgA) and IgC2b (C4IgC) to murine lactate dehydrogenase C4 and a polymer mAb IgA (npIgA) not cross-reacting with mouse sperm were intravenously injected into BALB/c mice, and the relative distribution of these Abs was determined. Polymer IgA was transported much more efficiently into the genital tract, trachea, and duodenum of both sexes than C4IgG and C4 mIgA (p < 0.01), The transport of polymer IgA (C4pIgA and npIgA) into the male genital tract greatly increased following orchiectomy (p < 0.01); this change was not affected by testosterone, suggesting that the unknown regulatory factor(s) from the testis may suppress polymer IgA transport, However, the transport of polymer IgA into female genital tissues was significantly decreased by ovariectomy (p < 0.01); this decline can be rectified by P-estradiol but not progesterone treatment, suggesting that estradiol may stimulate polymer IgA transport, Furthermore, the transport of C4IgG into tissues of the Fallopian tubes and the uterus was significantly decreased by treatment with progesterone (p < 0.01). Together, these findings indicate that serum polymer IgA can be transported selectively into the genital tracts of both sexes, that this transport is strongly under the control of gonads, and that transport of Ige into the Fallopian tubes and uterus is downregulated by progesterone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.