940 resultados para Blood coagulation factors


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings: In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance: A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diets high in monounsaturated fatty acids (MUFA) are increasingly being recommended as a highly-effective cholesterol-lowering strategy in populations at risk of CHD. However, the need for a re-appraisal of the benefits of diets rich in MUFA became apparent as a result of recent studies showing that meals high in olive oil cause greater postprandial activation of blood coagulation factor VII than meals rich in saturated fatty acids. The present review evaluates the evidence for the effects of MUFA-rich diets on fasting and postprandial measurements of haemostasis, and describes data from a recently-completed long-term controlled dietary intervention study. The data show that a background diet high in MUFA has no adverse effect on fasting haemostatic variables and decreases the postprandial activation of factor VII in response to a standard fat-containing meal. Since the same study also showed a significant reduction in the ex vivo activation of platelets in subjects on the high-MUFA diet, the overall findings suggest that there is no reason for concern regarding adverse haemostatic consequences of high-MUFA diets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Serine proteases are major components of viper venom and target various stages of the blood coagulation system in victims and prey. A better understanding of the diversity of serine proteases and other enzymes present in snake venom will help to understand how the complexity of snake venom has evolved and will aid the development of novel therapeutics for treating snake bites. Methodology and Principal Findings: Four serine protease-encoding genes from the venom gland transcriptome of Bitis gabonica rhinoceros were amplified and sequenced. Mass spectrometry suggests the four enzymes corresponding to these genes are present in the venom of B. g. rhinoceros. Two of the enzymes, rhinocerases 2 and 3 have substitutions to two of the serine protease catalytic triad residues and are thus unlikely to be catalytically active, though they may have evolved other toxic functions. The other two enzymes, rhinocerases 4 and 5, have classical serine protease catalytic triad residues and thus are likely to be catalytically active, however they have glycine rather than the more typical aspartic acid at the base of the primary specificity pocket (position 189). Based on a detailed analysis of these sequences we suggest that alternative splicing together with individual amino acid mutations may have been involved in their evolution. Changes within amino acid segments which were previously proposed to undergo accelerated change in venom serine proteases have also been observed. Conclusions and Significance: Our study provides further insight into the diversity of serine protease isoforms present within snake venom and discusses their possible functions and how they may have evolved. These multiple serine protease isoforms with different substrate specificities may enhance the envenomation effects and help the snake to adapt to new habitats and diets. Our findings have potential for helping the future development of improved therapeutics for snake bites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PARs (protease-activated receptors) are a family of four G-protein-coupled receptors for proteases from the circulation, inflammatory cells and epithelial tissues. This report focuses on PAR(2), which plays an important role in inflammation and pain. Pancreatic (trypsin I and II) and extrapancreatic (trypsin IV) trypsins, mast cell tryptase and coagulation factors VIIa and Xa cleave and activate PAR(2). Proteases cleave PAR(2) to expose a tethered ligand that binds to the cleaved receptor. Despite this irreversible activation, PAR(2) signalling is attenuated by beta-arrestin-mediated desensitization and endocytosis, and by lysosomal targeting and degradation, which requires ubiquitination of PAR(2). beta-Arrestins also act as scaffolds for the assembly of multi-protein signalling complexes that determine the location and function of activated mitogen-activated protein kinases. Observations of PAR(2)-deficient mice support a role for PAR(2) in inflammation, and many of the effects of PAR(2) activators promote inflammation. Inflammation is mediated in part by activation of PAR(2) in the peripheral nervous system, which results in neurogenic inflammation and hyperalgesia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: Thiol isomerases facilitate protein folding in the endoplasmic reticulum, and several of these enzymes, including protein disulfide isomerase and ERp57, are mobilized to the surface of activated platelets, where they influence platelet aggregation, blood coagulation, and thrombus formation. In this study, we examined the synthesis and trafficking of thiol isomerases in megakaryocytes, determined their subcellular localization in platelets, and identified the cellular events responsible for their movement to the platelet surface on activation. APPROACH AND RESULTS: Immunofluorescence microscopy imaging was used to localize protein disulfide isomerase and ERp57 in murine and human megakaryocytes at various developmental stages. Immunofluorescence microscopy and subcellular fractionation analysis were used to localize these proteins in platelets to a compartment distinct from known secretory vesicles that overlaps with an inner cell-surface membrane region defined by the endoplasmic/sarcoplasmic reticulum proteins calnexin and sarco/endoplasmic reticulum calcium ATPase 3. Immunofluorescence microscopy and flow cytometry were used to monitor thiol isomerase mobilization in activated platelets in the presence and absence of actin polymerization (inhibited by latrunculin) and in the presence or absence of membrane fusion mediated by Munc13-4 (absent in platelets from Unc13dJinx mice). CONCLUSIONS: Platelet-borne thiol isomerases are trafficked independently of secretory granule contents in megakaryocytes and become concentrated in a subcellular compartment near the inner surface of the platelet outer membrane corresponding to the sarco/endoplasmic reticulum of these cells. Thiol isomerases are mobilized to the surface of activated platelets via a process that requires actin polymerization but not soluble N-ethylmaleimide-sensitive fusion protein attachment receptor/Munc13-4-dependent vesicular-plasma membrane fusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The expression levels of the clotting initiator protein Tissue Factor (TF) correlate with vessel density and the histological malignancy grade of glioma patients. Increased procoagulant tonus in high grade tumors (glioblastomas) also indicates a potential role for TF in progression of this disease, and suggests that anticoagulants could be used as adjuvants for its treatment. Objectives: We hypothesized that blocking of TF activity with the tick anticoagulant Ixolaris might interfere with glioblastoma progression. Methods and results: TF was identified in U87-MG cells by flow-cytometric and functional assays (extrinsic tenase). In addition, flow-cytometric analysis demonstrated the exposure of phosphatidylserine in the surface of U87-MG cells, which supported the assembly of intrinsic tenase (FIXa/FVIIIa/FX) and prothrombinase (FVa/FXa/prothrombin) complexes, accounting for the production of FXa and thrombin, respectively. Ixolaris effectively blocked the in vitro TF-dependent procoagulant activity of the U87-MG human glioblastoma cell line and attenuated multimolecular coagulation complexes assembly. Notably, Ixolaris inhibited the in vivo tumorigenic potential of U87-MG cells in nude mice, without observable bleeding. This inhibitory effect of Ixolaris on tumor growth was associated with downregulation of VEGF and reduced tumor vascularization. Conclusion: Our results suggest that Ixolaris might be a promising agent for anti-tumor therapy in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AZEVEDO, George Dantas de et al. Procoagulant state after raloxifene therapy in postmenopausal women. Fertility and Sterility, Estados Unidos, v.84, n.6, p.1680-1684, 2005

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The occurrence of bioactive compounds in marine organisms comes awaking the interest of the pharmaceutical industry. Heparin, a sulfated polysaccharide which presence was already identified in several marine invertebrates, is very attractive due its remarkable functional versatility. Besides to intervene in blood coagulation, this molecule has a great anti-inflammatory potential. However, its strong anticoagulant activity difficult the clinical exploitation of its anti-inflammatory properties. Thus, the aims of this work were to evaluate the effect of a heparin-like compound (heparinoid), isolated from the cephalotorax of the Litopenaeus vannamei shrimp, on the inflammatory response, hemostasia and synthesis of antithrombotic heparan sulfate by endothelial cells, besides studying some aspects concerning its structure. The purified heparinoid was structurally characterized following an analytical boarding, involving electrophoresis and chromatography. The structural analysis have shown that this compound possess a high content of glucuronic acid residues and disulfated disaccharide units. In contrast to mammalian heparin, the heparinoid was incapable to stimulate the synthesis of heparan sulfate by endothelial cells in the tested concentrations, beyond to show reduced anticoagulant activity and hemorrhagic effect. In a model of acute inflammation, the compound isolated from the shrimp reduced more than 50% of the cellular infiltration. Besides reduce the activity of MMP-9 and proMMP-2 of the peritoneal lavage of inflamed animals, the heparinoid also reduced the activity of MMP-9 secreted by activated human leukocytes. These results demonstrate the potential of heparinoid from L. vannamei to intervene in the inflammatory response. For possessing reduced anticoagulant activity and hemorrhagic effect, this compound can serve as a structural model to direct the development of more specific therapeutical agents to the treatment of inflammatory diseases

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heparan sulfate (HS) and Heparin (Hep) glycosaminoglycans (GAGs) are heterogeneous and highly charged polysaccharides. HS is structurally related to Hep but is much less substituted with sulfo groups than heparin and has a more varied structure (or sequence). Because of structural similiarities between these two polymers, they have been described together as heparinoids . Both chains bind a variety of proteins and mediate various physiologically important processes including, blood coagulation, cell adhesion and growth factor regulation. Heparinoids with structural characteristics similar to these described from HS and/or Hep from mammalian tissues have been isolated from different species of invertebrates, although only a few heparinoids from unusual sources have been characterized. The present study describes the presence of unusual heparinoids population from Artemia franciscana, isolated after proteolysis and fractionation by ion exchange resin and named, F-3.0M. The study model in vivo were hemostasis (rat tail scarification) and inflamatoty activity. The tests in vitro were used for coagulations assays (PT and APTT). The analyse of the heparinoids eluted with 3,0M NaCl showed electrophoretic migration in different buffer systems a single band with a behaviour intermediate between those of mammalian HEP and HS. The main products obtained from Artemia heparinoids after enzymatic degradation with heparitinases I and II from F. heparinum were N-sulphated disaccharides (∆U-GlcNS,6S/ ∆U,2S-GlcNS and ∆U-GlcNS) and N-acetylated disaccharides (∆U, GlcNAc). This heparinoid had a lower hemorrhagic effect (400μg/ml) when compared to unfractiionated heparins(25μg/ml).The results also suggest a negligible APTT activity of this heparinoid (62.2s). No action was observed on PT indicating that F-3.0M haven t action on the extrinsic pathway. The results showed that the fraction F- 3.0M have inhibitory effect on migration of leukocytes, 64.5% in the concentration of 10 μg/ml (P<0.001). The search for new heparin and/or heparan sulphates analogs devoid of anticoagulant activity is an atractive alternative and may open up a wide variety of new therapeutic applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sulfated Polysaccharides with unique chemical structures and important biological activities has been found in a diversity of sea invertebrates. For that, to exist a huger interest on the biotechnology field in the research theses sulfated compounds isolated from sea organisms. Despite the privileged brazilian position for these compounds attainment, there are still a few scientific informations about the isolated substances and their biological activities. A head the displayed, the present work has for objectives, to evaluate the pharmacological properties of the glycosaminoglycans isolated from the sea shrimp Litopenaeus schimitti on homeostasis, blood coagulation, leukocytes migration and platelet/leukocyte adhesion. For this, yhe glycosaminoglycans were extracted from crustacean tissues by proteolysis, fractionation with acetone and later submitted to pharmacological assays. The crustacean tissues showed compounds heparin-like, with anticoagulant activity of 45 IU/mg and 90 IU/mg, respectively. These molecules showed low residual hemorrhagic effects in the tested concentration (100 µg/mL), when compared to unfractionated commercial heparin (UFH). Another dermatan sulfate-like compound, predominately constituted for disulfated disaccharides, was isolated from crustacean abdomen. This compound showed an efficient effect on leukocytes migration inhibition, in the concentration of 15 µg/mL, reducing the cellular infiltration in 65% when compared to the controlled animals. In this same concentration, the DS reduced in 60% the protein concentration of the peritoneal exudates. In the concentration, this compound of 0.5 mg/mL, it was capable to reduce in 40% platelet/leukocytes adhesion. Our data demonstrate that these sulfated polysaccharides isolated from the shrimp L. schimitti will can be used as bioactive compounds, appearing as active principles for pharmacological development, anticoagulants and inflammatory response regulators

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we investigated the platelet aggregating activity of whole crotoxin and its subunits isolated from Crotalus durissus cascavella venom. During the purification protocols of the venom, using HPLC molecular exclusion, we detected the presence of two different serine protease activities in the gyroxin fraction, and another in the crotoxin fraction, which induced strong and irreversible platelet aggregation, in addition to blood coagulation. From crotoxin, we isolated PLA(2), crotapotin (both fractions corresponding approximately 85% of whole crotoxin) and another minor fraction (F20) that exhibited serine protease activity. After a new fractionation on reverse phase HPLC chromatography, we obtained three other fractions named as F201, F202 and F203. F202 was obtained with high degree of molecular homogeneity with molecular mass of approximately 28 kDa and a high content of acidic amino residues, such as aspartic acid and glutamic acid. Other important amino acids were histidine, cysteine and lysine. This protein exhibited a high specificity for BApNA, a Michaelis-Menten behavior with Vmax estimated in 5.64 mu M/min and a Km value of 0.58 mM for this substrate. In this work, we investigated the ability of F202 to degrade fibrinogen and observed alpha and beta chain cleavage. Enzymatic as well as the platelet aggregation activities were strongly inhibited when incubated with TLCK and PMSF, specific inhibitors of serine protease. Also, F202 induced platelet aggregation in washed and platelet-rich plasma, and in both cases, TLCK inhibited its activity. The N-terminal amino acid sequence of F202 presented a high amino acid sequence homology with other thrombin-like proteins, but it was significantly different from gyroxin. These results showed that crotoxin is a highly heterogeneous protein composed of PLA(2), thrombin-like and other fractions that might explain the diversity of physiological and pharmacological activities of this protein.