401 resultados para Blending
Resumo:
This work aims to use the Palierne emulsion type model to describe the relationship between the rheological response to small amplitude oscillatory deformation and morphology of polypropylene/polyamide 6 (PP/PA6) blends compatibilized with maleic anhydride grafted polypropylene (PP-g-MAH). It was found that the Palierne emulsion type model could describe very well the linear viscoelastic responses of binary uncompatibilized PP/PA6 blends and failed to describe the ternary compatibilized PP/PP-g-MAH/PA6 blends. These features could be attributed to the fact that the morphology of the ternary blends was not of the emulsion type with the PA6 particles dispersed in the PP matrix but of an emulsion-in-emulsion type, i.e., PA6 particles dispersed in the PP matrix themselves contained PP or PP-g-MAH inclusions. By consideration of PP-in-PA6 particles as pure PA6 particles, where the volume fraction of the PA6 phase was increased accordingly, the Palierne emulsion type model could work very well for a ternary blending system. Preshear at low frequencies modified the morphology of both binary and ternary blends. The particles of the dispersed phase (PA6) became more uniform. These results suggested that the Palierne emulsion type model could be used to extract information on rheological properties and interfacial tension of polymer blends from known morphology and vice versa.
Resumo:
In this paper, the structures and properties of the neutral and doped blends of poly(3-dodecylthiophene) (P3DDT) with low-density polyethylene (LDPE) were investigated. Wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), Fourier transform infrared spectra (FTIR), and scanning electron microscopy (SEM) were used to characterize the structures and morphologies of the blends, and conductivity was also measured. It was found that separate crystallizations occur between P3DDT and LDPE. When the amount of P3DDT is small in the blend, it has the effect of a nucleation reagent and has some influence on the crystal structure. After doping, the interaction force between the molecular chains increases, and leads to a more compact packing and a more uniform dispersion in morphology. Through blending, the thermal stability of pure component could be greatly improved, especially when the P3DDT content is 5 wt %. The conductivity measurements indicate that the conductivity increases with the increase of the P3DDT composition and doping time.
Resumo:
A poly(butylene terephthalate) (PBT)/linear low-density polyethylene (LLDPE) alloy was prepared with a reactive extrusion method, For improved compatibility of the blending system, LLDPE grafted with acrylic acid (LLDPE-g-AA) by radiation was adopted in place of plain LLDPE. The toughness and extensibility of the PBT/LLDPE-g-AA blends, as characterized by the impact strengths and elongations at break, were much improved in comparison with the toughness and extensibility of the PBT/LLDPE blends at the same compositions. However, there was not much difference in their tensile (or flexural) strengths and moduli. Scanning electron microscopy photographs showed that the domains of PBT/LLDPE-g-AA were much smaller and their dispersions were more homogeneous than the domains and dispersions of the PBT/ T,T PE blends. Compared with the related values of the PBT/LLDPE blends, the contents and melting temperatures of the usual spherulites of PBT in PBT/LLDPE-g-AA decreased.
Resumo:
The effects of thermally crosslinkable polymerization of monomer reactant-polyimide (POI) on the miscibility, morphology, and crystallization of partially miscible poly(ether sulfone) (PES)/poly(phenylene sulfide) (PPS) blends were investigated with differential scanning calorimetry and scanning electron microscopy. The addition of POI led to a significant reduction in the size of PPS particles, and the interfacial tension between PPS and crosslinked POI was smaller than that between PES and crosslinked POI. During melt blending, crosslinking and grafting reactions of POI with PES and PPS homopolymers were detected; however, the reaction activity of POI with PPS was much higher than that with PES. The crosslinking and grafting reactions were developed further when blends were annealed at higher temperatures. Moreover, POI was an effective nucleation agent of the crystallization of PPS, but crosslinking and grafting hindered the crystallization of PPS. The final effect of POI on the crystallinity of the PPS phase was determined by competition between the two contradictory factors. The crosslinking and grafting reactions between the two components was controlled by the dosage of POI in the blends, the premixing sequence of POI with the two components, the annealing time, and the temperature.
Resumo:
Nanometre-sized poly(vinylidene fluoride) (PVDF) particle domains in a confined space were obtained by blending PVDF with excess poly(methyl methacrylate) (PMMA). When these particles were small enough they showed beta -form structure, which was different from the structure of bigger particles or PVDF bulk. However, the beta -form was thermodynamically metastable because it could eventually be transformed to a more stable phase by annealing at a certain temperature. Larger particle domains were of identical phase to the bulk, indicating that small size favours the formation of the beta -form. (C) 2000 Society of Chemical Industry.
Resumo:
Polyamide (PA)1010 is blended with a saturated polyolefin elastomer, ethylene-cu-olefin copolymer (EOCP). To improve the compatibility of PA1010 with EOCP, different grafting rates of EOCP with maleic anhydride (MA) are used. The reaction between PA1010 and EOCP-g-MA during extrusion is verified through an extraction test. Mechanical properties, such as notched Izod impact strength, elongation at break, etc., are examined as a function of grafting rate and weight fraction of elastomer. It was found that in the scale of grafting rate (0.13-0.92 wt %), 0.51 wt % is an extreme point for several mechanical properties. Elastomer domains of PA1010/ EOCP-g-MA blends show a finer and more uniform dispersion in the matrix than that of PA1010/EOCP blends. For the same grafting rate, the average sizes of elastomer particles are almost independent on the contents of elastomer, but for different grafting rates, the particle sizes are decreased with increasing grafting rate. The copolymer formed during extrusion strengthens the interfacial adhesion and acts as an emulsifier to prevent the aggregation of elastomer in the process of blending. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Sanchez-Lacombe (SL) lattice-fluid theory was used to predict the miscibility of the PEO/PVAc blending system. Integral interaction parameters, g of this polymer pair were calculated by using SL theory. And the effect of the temperature, composition of blends and molecular weight of PVAc on the extent of their miscibility has been discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A functionalized high-density polyethylene (HDPE) with maleic anhydride (MAH) was prepared using a reactive extruding method. This copolymer was used as a compatibilizer of blends of polyamide 6 (PA6) and ultrahigh molecular weight polyethylene (UHMWPE). Morphologies were examined by a scanning electron microscope. It was found that the dimension of UHMWPE and HDPE domains in the PA6 matrix decreased dramatically, compared with that of the uncompatibilized blending system. The size of the UHMWPE domains was reduced from 35 mu m (PA6/UHMWPE, 80/20) to less than 4 mu m (PA6/UHMWPE/HDPE-g-MAH, 80/20/20). The tensile strength and Izod impact strength of PA6/UHMWPE/HDPE-g-MAH (80/20/20) were 1.5 and 1.6 times as high as those of PA6/UHMWPE: (80/20), respectively. This behavior could be attributed to chemical reactions between the anhydride groups of HDPE-g-MAH and the terminal amino groups of PA6 in PA6/UHMWPE/HDPE-g-MAH blends. Thermal analysis was performed to confirm that the above chemical reactions took place during the blending process. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The effect of PMR-polyimide(POI) as the interfacial agent on the interface characteristics, morphology features and crystallization of poly (ether sulfone) /poly (phenylene sulfide) (PES/PPS) and poly(ether ether ketone)/poly (ether sulfone) (PEEK/PES) partly miscible blends were investigated by means of the scanning electron microscopy, WAXD and XPS surface analysis. It is found that the interfacial adhesion was enhanced remarkably, the size of the dispersed phase particles was reduced significantly and the miscibility was improved by the addition of POI. During melt blending cross-link and/or grafting reaction of POI with PES, PEEK and PPS homopolymers was detected, however the reaction activity of POI with PPS was much higher than that of PES and PEEK. It was also found that POI was an effective nucleation agent of the crystallization of PPS.
Resumo:
Phase behaviors and heats of mixing of the miscible blends of poly(ethylene oxide) (PEO) and poly(vinyl acetate) (PVAc) with different molecular weights were investigated by DSC. A method proposed by Natasohn and Ebert et al. was adopted to estimate the binodal temperatures and the enthalpies of mixing from onset temperatures and values of areas of a series of endothermic peaks (corresponding to heats of demixing), respectively, in their heating scanning thermograms obtained with different heating rates. Phase diagrams and heats of mixing of this blending system were also predicted by using Sanchez-Lacombe lattice fluid theory. A very good agreement was obtained for both. phase behaviors and heats of mixing obtained with two different methods.
Resumo:
Conductive polyaniline was found to have special marine antifouling property. The coating from conducting polyaniline and epoxy resin(or polyurethane) can last 6-9 months in Southern China sea, i.e., less than 10% of the coating surface was fouled during this period. The conducting polyaniline has special synergetic antifouling effect on other antifouling agents like cuprous oxide or 4, 4'-dichlorodiphenyltrichloroethane. The conductivity of the polyaniline was found to be extremely important for its antifouling effect. Moreover, employing aliphatic polyamine as solvent of emeraldine base and curing agent of epoxy resin, a new technique to process corrosion prevention coating containing emeraldine base was developed, therefrom the emeraldine base and epoxy resin was in molecular level blending. This technique was solvent free and extremely effective, i.e., only 1wt% of emeraldine base in the coating can have good corrosion prevention property.
Resumo:
Polyaniline (PAn) was doped with phosphonic acid containing hydrophilic tails. The solubility of the doped PAn in water was controlled by changing the length of hydrophilic chain in the dopant. When poly(ethylene glycol) monomethyl ether (PEGME) with molecular weight M-w = 550 was used as the hydrophilic chain of the dopant, the doped PAn was entirely soluble in water. The film cast from aqueous solution showed good electrochemical redox reversibility, Aqueous solution blending of PAn with poly(ethylene glycol) (PEG, M-w = 20 000) and poly(N-vinyl pyrrolidone) (PVP, M-w = 360 000) was achieved. Percolation threshold of the composite film was lower than 3 wt.%. Electrical conductivity of the composite film was in the range of 10(-1)-10(-5) S cm(-1), depending on molecular weight of the acid and the content of PAn in the composite. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Effects of the compatibilizer polypropylene grafted with glycidyl methacrylate(PP-g-GMA) on the morphology, thermal, rheological and mechanical properties of polypropylene and polycarbonate blends (PP/PC) were studied. It was found that the addition of PP-g-GMA significantly changed their morphology. The mean size of domains reduced from 20 mu m to less than 5 mu m. The dispersed domain size is also strongly dependent upon the content of PP-g-GMA. The interfacial tension of PP/PC/PP-g-GMA (50/30/20) is only about one-tenth of PP/PC (70/30). The crystallization temperature of PP in PP/PC/PP-g-GMA is 5-8 degrees C higher than that of PP in PP/PC blends. Characterization studies based on mechanical properties, differential scanning calorimetry, rheology and morphological evidence obtained by using scanning electron microscopy support the hypothesis that an in-situ copolymer PP-g-PC was formed during the blending process. (C) 1997 Elsevier Science Ltd.
Resumo:
Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.