415 resultados para Biomaterial
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.
Resumo:
The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process
Resumo:
Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33 x 10(-7) m(3)/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47degrees to 13degrees and surface energies from 6.4 x 10(-6) to 8.3 x 10(-6) J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Aqueous-based polyurethane dispersions have been widely utilized as lubricants in textile, shoes, automotive, biomaterial and many other industries because they are less aggressive to surrounding environment. In this work thin films with different thickness were deposited on biocompatible polyurethane by plasma polymerization process using diethylene glycol dimethyl ether (Diglyme) as monomer. Molecular structure of the films was analyzed by Fourier Transform Infrared spectroscopy. The spectra exhibited absorption bands of O-H (3500-3200cm(-1)), C-H (3000-2900cm(-1)), C=O (1730-1650cm(-1)), C-O and C-O-C bonds at 1200-1600cm(-1). The samples wettability was evaluated by measurements of contact angle using different liquids such as water, glycerol, poly-ethane and CMC. The polyurethane surface showed hydrophilic behavior after diglyme plasma-deposition with contact angle dropping from 85(0) to 22(0). Scanning Electron Microscopy revealed that diglyme films covered uniformly the polyurethane surfaces ensuring to it a biocompatible characteristic.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.Methods: Twenty-five Swiss Albino mice were used. A 10 x 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology.Results: A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface.Conclusion: The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.
Resumo:
Purpose: Several urethral conditions may require tissue substitution. One collagen-base biomaterial that recently emerged as an option is small intestinal submucosa (SIS). The aim of this study was to compare the results of SIS and buccal mucosa for urethral substitution in rabbits.Materials and Methods: Thirty-six North Folk male rabbits were randomized into three groups. In all animals, a 10 x 5 mm urethral segment was excised, and the urethral defect was repaired using a one-layer SIS patch (group I [GI]); four-layer SIS (group II [GII]); or buccal mucosa (group III [GIII]). Urethrography was performed preoperatively and after 12 weeks. After sacrifice, graft retraction was objectively measured using Scion Image (R) computer analysis and by calculation of ellipse area. The grade of fibrosis, inflammatory reaction, vascular/epithelial regeneration, and collagen III/I ratio were analyzed by hematoxylin/eosin and Picrosirius red staining.Results: Urethrography confirmed a wide urethral caliber without any signs of strictures after surgery. Urethral fistulae was diagnosed in 8.3% of cases (1 animal each group). Average graft shrinkage was 55.2% in GI; 44.2% in GII; and 57.2% in GIII (p < 0.05). The intensity of chronic inflammation, fibrosis, epithelium regeneration, and neovascularization was similar in all groups (p > 0.05). Collagen III/I ratio was higher in GII (GI: 119.6; GII: 257.2 and GIII: 115.0); p < 0.01.Conclusions: The four-layer SIS is more advantageous than the one-layer SIS and buccal mucosa for urethral substitution in rabbits.
Resumo:
Avaliou-se o uso de biomaterial de origem bovina na regeneração de defeitos ósseos segmentares empregando-se 12 coelhos, fêmeas, da raça Norfolk, com idade de seis meses e pesos entre 3 e 4,5kg. Realizou-se falha segmentar bilateral de um centímetro de comprimento na diáfise do rádio, com inclusão do periósteo. No membro direito, o defeito foi delimitado por membrana de pericárdio liofilizada, contendo em seu interior mistura de proteínas morfogenéticas ósseas adsorvidas a hidroxiapatita, colágeno liofilizado e osso inorgânico. No membro esquerdo, o defeito não recebeu tratamento. Radiografias foram obtidas ao término do procedimento cirúrgico e aos sete, 30, 60, 90, 120 e 150 dias de pós-operatório. Após eutanásia de seis coelhos aos 60 dias e seis aos 150 dias de pós-cirúrgico, os resultados radiográficos e histológicos mostraram que a regeneração óssea foi inibida nos defeitos segmentares tratados com o biomaterial.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A boa constrictor was presented with a short oblique compound fracture of the rostral third of the right maxilla. The fracture was reduced and biomaterial was placed around the fracture. A computed tomography scan at 1.5 mo post-surgery showed that the fracture had healed with slight displacement of the bone fragments.
Resumo:
Extensive bone defects in maxillofacial region can be corrected with autogenous grafts; otherwise, the disadvantages of the therapeutics modality take the research for new bone substitutes. The aim of the study was to evaluate and compare the osteoconductive properties of 3 commercial available biomaterials. A total of 30 calvarial defects (5-mm diameter) were randomly divided into 5 treatment groups, with a total of 6 defects per treatment group (n = 6). The treatment groups were as follows: 500 to 1000 Km beta-tricalcium phosphate (beta-TCP), polylactic and polyglycolic acid (PL/PG) gel, calcium phosphate cement, untreated control, and autograft control. The evaluations were based on histomorphometric analysis at 60 postoperative days. The results have shown that beta-TCP and autograft control supported bone formation at 60 postoperative days. beta-Tricalcium phosphate showed the highest amount of mineralized area per total area and statistically significant compared with PL/PG, calcium phosphate cement, and untreated control groups. The PL/PG gel does not have osteoconductive properties and performed similar to empty control. Calcium phosphate cement showed higher number of multinucleated giant cells around the sites of the biomaterial and showed newly formed bone only at the edges of the biomaterial, without bone formation within the biomaterial. The findings presented herein indicate that bone formation reached a maximum level when rat calvarial defects were filled with beta-TCP at 60 postoperative days. Further studies should be conducted with beta-TCP to understand the potential of this biomaterial in bone regeneration.
Resumo:
The restoration and recovery of the alveolar healing process are a challenge to dental surgeons to achieve satisfactory results at the osseointegration of implants and implant rehabilitation. Different operative technique and biomaterials are being used to reconstruct the framework of the alveolar process. One of the biomaterials used for this purpose is the bioactive glass. The aim of this study was to report clinical and histologic final results of 7 clinical reports of alveolar ridge augmentation using bioactive glass. Clinically, bioglass was able to maintain bone architecture of the alveolar bone and repaired satisfactory. Biopsy was performed on the histologic samples and showed bone formation in intimate contact to the particles of the biomaterial.