936 resultados para Bell-Shaped Tuning
Resumo:
AlçatPlanta/Imatges interior-exterior
Resumo:
This work describes a simulation tool being developed at UPC to predict the microwave nonlinear behavior of planar superconducting structures with very few restrictions on the geometry of the planar layout. The software is intended to be applicable to most structures used in planar HTS circuits, including line, patch, and quasi-lumped microstrip resonators. The tool combines Method of Moments (MoM) algorithms for general electromagnetic simulation with Harmonic Balance algorithms to take into account the nonlinearities in the HTS material. The Method of Moments code is based on discretization of the Electric Field Integral Equation in Rao, Wilton and Glisson Basis Functions. The multilayer dyadic Green's function is used with Sommerfeld integral formulation. The Harmonic Balance algorithm has been adapted to this application where the nonlinearity is distributed and where compatibility with the MoM algorithm is required. Tests of the algorithm in TM010 disk resonators agree with closed-form equations for both the fundamental and third-order intermodulation currents. Simulations of hairpin resonators show good qualitative agreement with previously published results, but it is found that a finer meshing would be necessary to get correct quantitative results. Possible improvements are suggested.
Resumo:
This research has been focused at the development of a tuned systematic design methodology, which gives the best performance in a computer aided environment and utilises a cross-technological approach, specially tested with and for laser processed microwave mechanics. A tuned design process scheme is also presented. Because of the currently large production volumes of microwave and radio frequency mechanics even slight improvements of design methodologies or manufacturing technologies would give reasonable possibilities for cost reduction. The typical number of required iteration cycles could be reduced to one fifth of normal. The research area dealing with the methodologies is divided firstly into a function-oriented, a performance-oriented or a manufacturability-oriented product design. Alternatively various approaches can be developed for a customer-oriented, a quality-oriented, a cost-oriented or an organisation-oriented design. However, the real need for improvements is between these two extremes. This means that the effective methodology for the designers should not be too limited (like in the performance-oriented design) or too general (like in the organisation-oriented design), but it should, include the context of the design environment. This is the area where the current research is focused. To test the developed tuned design methodology for laser processing (TDMLP) and the tuned optimising algorithm for laser processing (TOLP), seven different industrial product applications for microwave mechanics have been designed, CAD-modelled and manufactured by using laser in small production series. To verify that the performance of these products meets the required level and to ensure the objectiveness ofthe results extensive laboratory tests were used for all designed prototypes. As an example a Ku-band horn antenna can be laser processed from steel in 2 minutes at the same time obtaining a comparable electrical performance of classical aluminium units or the residual resistance of a laser joint in steel could be limited to 72 milliohmia.
Resumo:
Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.
Resumo:
Diplomityö tarkastelee säikeistettyä ohjelmointia rinnakkaisohjelmoinnin ylemmällä hierarkiatasolla tarkastellen erityisesti hypersäikeistysteknologiaa. Työssä tarkastellaan hypersäikeistyksen hyviä ja huonoja puolia sekä sen vaikutuksia rinnakkaisalgoritmeihin. Työn tavoitteena oli ymmärtää Intel Pentium 4 prosessorin hypersäikeistyksen toteutus ja mahdollistaa sen hyödyntäminen, missä se tuo suorituskyvyllistä etua. Työssä kerättiin ja analysoitiin suorituskykytietoa ajamalla suuri joukko suorituskykytestejä eri olosuhteissa (muistin käsittely, kääntäjän asetukset, ympäristömuuttujat...). Työssä tarkasteltiin kahdentyyppisiä algoritmeja: matriisioperaatioita ja lajittelua. Näissä sovelluksissa on säännöllinen muistinkäyttökuvio, mikä on kaksiteräinen miekka. Se on etu aritmeettis-loogisissa prosessoinnissa, mutta toisaalta huonontaa muistin suorituskykyä. Syynä siihen on nykyaikaisten prosessorien erittäin hyvä raaka suorituskyky säännöllistä dataa käsiteltäessä, mutta muistiarkkitehtuuria rajoittaa välimuistien koko ja useat puskurit. Kun ongelman koko ylittää tietyn rajan, todellinen suorituskyky voi pudota murto-osaan huippusuorituskyvystä.
Resumo:
Työn tavoitteena oli selvittää Stora Enso Oyj:llä käytössä olevan Fenix myynnin- ja logistiikanhallintajärjestelmän logistiikkapalveluiden suorituskyky, tuottaa asiakasohjelmisto suorituskykymittauksista muodostuneen tiedon hallintaan sekä tuottaa toteuttamissuunnitelma suorituskyvyn parantamiseksi. Suorituskyky mitattiin käyttämällä TUXEDOn tarjoamia ominaisuuksia. Suorituskykymittausten tuloksien arviointia varten rakennettiin asiakasohjelmisto, jolla pystyttiin tuottamaan tarvittavat yhteenvetotiedot palveluiden kestoista ja rakenteista. Valmiita ratkaisuja ei ollut tarjolla, joten kaikki tarvittavat ohjelmistot on rakennettu osana tätä työtä. Kaikki komponenttiliittymät toteutettiin siten, että myös muitakin kuin logistiikkaan liittyviä palveluita voidaan tarvittaessa mitata. Mittausten tuloksena saatuja keskimääräisiä suoritusaikoja käytettiin hyväksi toteuttamissuunnitelmaa tehdessä. Toteutussuunnitelma sisältää useiden logistiikka-alueiden kehittämisideoita, joilla Fenixin logistiikkapalveluiden suorituskykyä voidaan tehostaa., ja nykyinen järjestelmän toimintanopeus pystytään säilyttämään tulevaisuudessa. Toteuttamissuunnitelmassa esitettyjä toimenpiteitä tullaan toteuttamaan TietoEnator Oyj:ssä vuoden 2003 aikana.
Resumo:
Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation.
Resumo:
Myc controls the metabolic reprogramming that supports effector T cell differentiation. The expression of Myc is regulated by the T cell antigen receptor (TCR) and pro-inflammatory cytokines such as interleukin-2 (IL-2). We now show that the TCR is a digital switch for Myc mRNA and protein expression that allows the strength of the antigen stimulus to determine the frequency of T cells that express Myc. IL-2 signalling strength also directs Myc expression but in an analogue process that fine-tunes Myc quantity in individual cells via post-transcriptional control of Myc protein. Fine-tuning Myc matters and is possible as Myc protein has a very short half-life in T cells due to its constant phosphorylation by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation. We show that Myc only accumulates in T cells exhibiting high levels of amino acid uptake allowing T cells to match Myc expression to biosynthetic demands. The combination of digital and analogue processes allows tight control of Myc expression at the population and single cell level during immune responses.
Resumo:
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement.
Resumo:
What drove the transition from small-scale human societies centred on kinship and personal exchange, to large-scale societies comprising cooperation and division of labour among untold numbers of unrelated individuals? We propose that the unique human capacity to negotiate institutional rules that coordinate social actions was a key driver of this transition. By creating institutions, humans have been able to move from the default 'Hobbesian' rules of the 'game of life', determined by physical/environmental constraints, into self-created rules of social organization where cooperation can be individually advantageous even in large groups of unrelated individuals. Examples include rules of food sharing in hunter-gatherers, rules for the usage of irrigation systems in agriculturalists, property rights and systems for sharing reputation between mediaeval traders. Successful institutions create rules of interaction that are self-enforcing, providing direct benefits both to individuals that follow them, and to individuals that sanction rule breakers. Forming institutions requires shared intentionality, language and other cognitive abilities largely absent in other primates. We explain how cooperative breeding likely selected for these abilities early in the Homo lineage. This allowed anatomically modern humans to create institutions that transformed the self-reliance of our primate ancestors into the division of labour of large-scale human social organization.
Resumo:
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km(2) along an elevation gradient of 500 m by tag-encoded 454-pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, geographic and climatic parameters) and biotic (wheat cultivar, previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity whereas wheat cultivar, cropping history and the number of freezing days per year shaped the taxonomic beta diversity of these communities.