979 resultados para Beaufort Birkenbach, Luxembourg


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable data set of Arctic sea ice concentration based on satellite observations exists since 1972. Over this time period of 36 years western arctic temperatures have increased; the temperature rise varies significantly from one season to another and over multi-year time scales. In contrast to most of Alaska, however, on the North Slope the warming continued after 1976, when a circulation change occurred, as expressed in the PDO index. The mean temperature increase for Barrow over the 36-year period was 2.9°C, a very substantial change. Wind speeds increased by 18% over this time period, however, the increase were non-linear and showed a peak in the early 1990s. The sea ice extent of the Arctic Ocean has decreased strongly in recent years, and in September 2007 a new record in the amount of open water was recorded in the Western Arctic. We observed for the Southern Beaufort Sea a fairly steady increase in the mean annual amount of open water from 14% in 1972 to 39% in 2007, as deduced from the best linear fit. In late summer the decrease is much larger, and September has, on average, the least ice concentration (22%), followed by August (35%) and October (54%). The correlation coefficient between mean annual values of temperature and sea ice concentration was 0.84. On a monthly basis, the best correlation coefficient was found in October with 0.88. However, the relationship between winter temperatures and the sea ice break-up in summer was weak. While the temperature correlated well with the CO2 concentration (r=0.86), the correlation coefficient between CO2 and sea ice was lower (r=-0.68). After comparing the ice concentration with 17 circulation indices, the best relation was found with the Pacific Circulation Index (r=-0.59).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present evidence that both geophysical and thermodynamic conditions in sea ice are important in understanding pathways of accumulation or rejection of hexachlorocyclohexanes (HCHs). a- and g-HCH concentrations and a-HCH enantiomer fractions have been measured in various ice classes and ages from the Canadian High Arctic. Mean a-HCH concentrations reached 0.642 ± 0.046 ng/L in new and young ice (<30 cm), 0.261 ±0.015 ng/L in the first-year ice (30-200 cm) and 0.208 ±0.045 in the old ice (>200 cm). Mean g-HCH concentrations were 0.066 ± 0.006 ng/L in new and young ice, 0.040 ±0.002 ng/L in the first-year ice and 0.040 ±0.007 ng/L in the old ice. In general, a-HCH concentrations and vertical distributions were highly dependent on the initial entrapment of brine and the subsequent desalination process. g-HCH levels and distribution in sea ice were not as clearly related to ice formation processes. During the year, first-year ice progressed from freezing (accumulation) to melting (ablation). Relations between the geophysical state of the sea ice and the vertical distribution of HCHs are described as ice passes through these thermodynamic states. In melting ice, which corresponded to the algal bloom period, the influence of biological processes within the bottom part of the ice on HCH concentrations and a-HCH enantiomer fraction is discussed using both univariate and multivariate approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alpha- and gamma-hexachlorocyclohexanes (HCHs) are being scavenged from the atmosphere by falling snow, with the average total scavenging ratios (WT) of 3.8 x 10**4 and 9.6 x 10**3, respectively. After deposition, HCH snow concentrations can decrease by 40% because of snowpack ventilation and increase by 50% because of upward migration of brine from the ice. HCH vertical distribution in sufficiently cold winter sea ice, which maintains brine volume fractions <5%, reflects the ice growth history. Initially, the entrapment of brine (and HCHs) in ice depends on the rates of ice growth and desalination. However, after approximately the first week of ice formation, ice growth rate becomes dominant. Deviations of HCH concentrations from the values predicted by the ice bulk salinity (rate of brine entrapment) can be explained by spatial variability of HCHs in surface water. HCH burden in the majority of the ice column remains locked throughout most of the season until the early spring when snow meltwater percolates into the ice, delivering HCHs to the upper ocean via desalination by flushing. Percolation can lead to an increase in alpha- and gamma-HCH in the sea ice by up to 2%-18% and 4%-32%, respectively.

Relevância:

20.00% 20.00%

Publicador: