941 resultados para Bayesian inversion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The aim of our study was the investigation of a novel navigator-gated three-dimensional (3D) steady-state free-precession (SSFP) sequence for free-breathing renal magnetic resonance angiography (MRA) without contrast medium, and to examine the advantage of an additional inversion prepulse for improved contrast. METHODS: Eight healthy volunteers (mean age 29 years) and eight patients (mean age 53 years) were investigated on a 1.5 Tesla MR system (ACS-NT, Philips, Best, The Netherlands). Renal MRA was performed using three navigator-gated free-breathing cardiac-triggered 3D SSFP sequences [repetition time (TR) = 4.4 ms, echo time (TE) = 2.2 ms, flip angle 85 degrees, spatial resolution 1.25 x 1.25 x 4.0 mm(3), scanning time approximately 1 minute 30 seconds]. The same sequence was performed without magnetization preparation, with a non-slab selective and a slab-selective inversion prepulse. Signal-to-noise ratio (SNR), contrast-to-noise (CNR) vessel length, and subjective image quality were compared. RESULTS: Three-dimensional SSFP imaging combined with a slab-selective inversion prepulse enabled selective and high contrast visualization of the renal arteries, including the more distal branches. Standard SSFP imaging without magnetization preparation demonstrated overlay by veins and renal parenchyma. A non-slab-selective prepulse abolished vessel visualization. CNR in SSFP with slab-selective inversion was 43.6 versus 10.6 (SSFP without magnetization preparation) and 0.4 (SSFP with non-slab-selective inversion), P < 0.008. CONCLUSION: Navigator-gated free-breathing cardiac-triggered 3D SSFP imaging combined with a slab-selective inversion prepulse is a novel, fast renal MRA technique without the need for contrast media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. METHODS: The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. RESULTS: Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. CONCLUSIONS: A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a thorough aggregation of probability and graph theory, Bayesian networks currently enjoy widespread interest as a means for studying factors that affect the coherent evaluation of scientific evidence in forensic science. Paper I of this series of papers intends to contribute to the discussion of Bayesian networks as a framework that is helpful for both illustrating and implementing statistical procedures that are commonly employed for the study of uncertainties (e.g. the estimation of unknown quantities). While the respective statistical procedures are widely described in literature, the primary aim of this paper is to offer an essentially non-technical introduction on how interested readers may use these analytical approaches - with the help of Bayesian networks - for processing their own forensic science data. Attention is mainly drawn to the structure and underlying rationale of a series of basic and context-independent network fragments that users may incorporate as building blocs while constructing larger inference models. As an example of how this may be done, the proposed concepts will be used in a second paper (Part II) for specifying graphical probability networks whose purpose is to assist forensic scientists in the evaluation of scientific evidence encountered in the context of forensic document examination (i.e. results of the analysis of black toners present on printed or copied documents).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimation of the spatial statistics of subsurface velocity heterogeneity from surface-based geophysical reflection survey data is a problem of significant interest in seismic and ground-penetrating radar (GPR) research. A method to effectively address this problem has been recently presented, but our knowledge regarding the resolution of the estimated parameters is still inadequate. Here we examine this issue using an analytical approach that is based on the realistic assumption that the subsurface velocity structure can be characterized as a band-limited scale-invariant medium. Our work importantly confirms recent numerical findings that the inversion of seismic or GPR reflection data for the geostatistical properties of the probed subsurface region is sensitive to the aspect ratio of the velocity heterogeneity and to the decay of its power spectrum, but not to the individual values of the horizontal and vertical correlation lengths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The susceptibility of blood changes after administration of a paramagnetic contrast agent that shortens T(1). Concomitantly, the resonance frequency of the blood vessels shifts in a geometry-dependent way. This frequency change may be exploited for incremental contrast generation by applying a frequency-selective saturation prepulse prior to the imaging sequence. The dual origin of vascular enhancement depending first on off-resonance and second on T(1) lowering was investigated in vitro, together with the geometry dependence of the signal at 3T. First results obtained in an in vivo rabbit model are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The estimation of demographic parameters from genetic data often requires the computation of likelihoods. However, the likelihood function is computationally intractable for many realistic evolutionary models, and the use of Bayesian inference has therefore been limited to very simple models. The situation changed recently with the advent of Approximate Bayesian Computation (ABC) algorithms allowing one to obtain parameter posterior distributions based on simulations not requiring likelihood computations. RESULTS: Here we present ABCtoolbox, a series of open source programs to perform Approximate Bayesian Computations (ABC). It implements various ABC algorithms including rejection sampling, MCMC without likelihood, a Particle-based sampler and ABC-GLM. ABCtoolbox is bundled with, but not limited to, a program that allows parameter inference in a population genetics context and the simultaneous use of different types of markers with different ploidy levels. In addition, ABCtoolbox can also interact with most simulation and summary statistics computation programs. The usability of the ABCtoolbox is demonstrated by inferring the evolutionary history of two evolutionary lineages of Microtus arvalis. Using nuclear microsatellites and mitochondrial sequence data in the same estimation procedure enabled us to infer sex-specific population sizes and migration rates and to find that males show smaller population sizes but much higher levels of migration than females. CONCLUSION: ABCtoolbox allows a user to perform all the necessary steps of a full ABC analysis, from parameter sampling from prior distributions, data simulations, computation of summary statistics, estimation of posterior distributions, model choice, validation of the estimation procedure, and visualization of the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint inversion of crosshole ground-penetrating radar and seismic data can improve model resolution and fidelity of the resultant individual models. Model coupling obtained by minimizing or penalizing some measure of structural dissimilarity between models appears to be the most versatile approach because only weak assumptions about petrophysical relationships are required. Nevertheless, experimental results and petrophysical arguments suggest that when porosity variations are weak in saturated unconsolidated environments, then radar wave speed is approximately linearly related to seismic wave speed. Under such circumstances, model coupling also can be achieved by incorporating cross-covariances in the model regularization. In two case studies, structural similarity is imposed by penalizing models for which the model cross-gradients are nonzero. A first case study demonstrates improvements in model resolution by comparing the resulting models with borehole information, whereas a second case study uses point-spread functions. Although radar seismic wavespeed crossplots are very similar for the two case studies, the models plot in different portions of the graph, suggesting variances in porosity. Both examples display a close, quasilinear relationship between radar seismic wave speed in unconsolidated environments that is described rather well by the corresponding lower Hashin-Shtrikman (HS) bounds. Combining crossplots of the joint inversion models with HS bounds can constrain porosity and pore structure better than individual inversion results can.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: Plasma concentrations of imatinib differ largely between patients despite same dosage, owing to large inter-individual variability in pharmacokinetic (PK) parameters. As the drug concentration at the end of the dosage interval (Cmin) correlates with treatment response and tolerability, monitoring of Cmin is suggested for therapeutic drug monitoring (TDM) of imatinib. Due to logistic difficulties, random sampling during the dosage interval is however often performed in clinical practice, thus rendering the respective results not informative regarding Cmin values.Objectives: (I) To extrapolate randomly measured imatinib concentrations to more informative Cmin using classical Bayesian forecasting. (II) To extend the classical Bayesian method to account for correlation between PK parameters. (III) To evaluate the predictive performance of both methods.Methods: 31 paired blood samples (random and trough levels) were obtained from 19 cancer patients under imatinib. Two Bayesian maximum a posteriori (MAP) methods were implemented: (A) a classical method ignoring correlation between PK parameters, and (B) an extended one accounting for correlation. Both methods were applied to estimate individual PK parameters, conditional on random observations and covariate-adjusted priors from a population PK model. The PK parameter estimates were used to calculate trough levels. Relative prediction errors (PE) were analyzed to evaluate accuracy (one-sample t-test) and to compare precision between the methods (F-test to compare variances).Results: Both Bayesian MAP methods allowed non-biased predictions of individual Cmin compared to observations: (A) - 7% mean PE (CI95% - 18 to 4 %, p = 0.15) and (B) - 4% mean PE (CI95% - 18 to 10 %, p = 0.69). Relative standard deviations of actual observations from predictions were 22% (A) and 30% (B), i.e. comparable to the intraindividual variability reported. Precision was not improved by taking into account correlation between PK parameters (p = 0.22).Conclusion: Clinical interpretation of randomly measured imatinib concentrations can be assisted by Bayesian extrapolation to maximum likelihood Cmin. Classical Bayesian estimation can be applied for TDM without the need to include correlation between PK parameters. Both methods could be adapted in the future to evaluate other individual pharmacokinetic measures correlated to clinical outcomes, such as area under the curve(AUC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.